nitroarginine and sepiapterin

nitroarginine has been researched along with sepiapterin* in 3 studies

Other Studies

3 other study(ies) available for nitroarginine and sepiapterin

ArticleYear
Effects of sepiapterin supplementation and NOS inhibition on glucocorticoid-induced hypertension.
    American journal of hypertension, 2010, Volume: 23, Issue:5

    Glucocorticoid-induced hypertension is associated with imbalance between nitric oxide (NO) and superoxide. One of the pathways that causes this imbalance is endothelial NO synthase (eNOS) uncoupling. In the present study, adrenocorticotrophic hormone (ACTH)- and dexamethasone-treated rats were further treated with sepiapterin, a precursor of tetrahydrobiopterin, or N-nitro-L-arginine (NOLA), an inhibitor of NOS, to investigate the role of eNOS uncoupling in glucocorticoid-induced hypertension.. Male Sprague-Dawley (SD) rats (n = 7-13/group) were treated with either sepiapterin (5 mg/kg/day, IP) or saline (sham) 4 days before and during ACTH (0.2 mg/kg/day, SC), dexamethasone (0.03 mg/kg/day, SC), or saline treatment. NOLA (0.4 mg/ml in drinking water) was given to rats 4 days before and during dexamethasone treatment. Systolic blood pressure (SBP) was measured by the tail-cuff method.. Both ACTH (116 +/- 2 to 135 +/- 3 mm Hg (mean +/- s.e.m.), P < 0.001) and dexamethasone (114 +/- 4 to 133 +/- 3 mm Hg, P < 0.0005) increased SBP. Sepiapterin alone did not alter SBP. Sepiapterin did not prevent ACTH- (129 +/- 4 mm Hg, NS) or dexamethasone-induced hypertension (135 +/- 3 mm Hg, NS), although plasma total biopterin concentrations were increased. NOLA increased SBP in rats prior to dexamethasone or saline treatment. NOLA further increased SBP in both saline- (133 +/- 4 to 157 +/- 3 mm Hg, P < 0.05) and dexamethasone-treated rats (135 +/- 5 to 170 +/- 6 mm Hg, P < 0.05). ACTH and dexamethasone increased plasma F(2)-isoprostane concentrations. Neither sepiapterin nor NOLA significantly affected this marker of oxidative stress.. Sepiapterin did not prevent ACTH- or dexamethasone-induced hypertension. NOLA exacerbated dexamethasone-induced hypertension. These data suggest that eNOS uncoupling does not play a major role in the genesis of glucocorticoid-induced hypertension in the rat.

    Topics: Adrenocorticotropic Hormone; Animals; Biomarkers; Biopterins; Blood Pressure; Dexamethasone; Dietary Supplements; Disease Models, Animal; Enzyme Inhibitors; F2-Isoprostanes; Hypertension; Male; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Nitroarginine; Oxidative Stress; Pterins; Rats; Rats, Sprague-Dawley

2010
Glucocorticoids inhibit tetrahydrobiopterin-dependent endothelial function.
    Experimental biology and medicine (Maywood, N.J.), 2001, Volume: 226, Issue:1

    Tetrahydrobiopterin (BH4) acts as an important co-factor for endothelial nitric oxide synthase (eNOS). Glucocorticoids have been shown to inhibit expression of the rate-limiting enzyme for tetrahydrobiopterin synthesis, GTP cyclohydrolase, in other cell types. We hypothesized that endothelium-dependent vasodilator responses would be blunted in rats made hypertensive with dexamethasone. Further, we hypothesized that treatment of rat vascular segments with dexamethasone would result in attenuation of endothelial function accompanied by decreased GTP cyclohydrolase expression. We report that endothelium-dependent relaxation responses to the calcium ionophore A23187 are reduced in aortic rings from dexamethasone-hypertensive rats compared with sham values. Dexamethasone incubation abolishes contraction to Nomega-nitro-L-arginine (L-NNA, 10(-5) M) in endothelium-intact aortic rings, and inhibits expression of GTP cyclohydrolase. We conclude that inhibition of BH4 synthesis by glucocorticoid regulation of GTP cyclohydrolase expression may contribute to reduced endothelium-dependent vasodilation characteristic of glucocorticoid-induced hypertension.

    Topics: Animals; Aorta, Thoracic; Biopterins; Dexamethasone; Endothelium, Vascular; Glucocorticoids; GTP Cyclohydrolase; Male; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Nitroarginine; Phenylephrine; Pteridines; Pterins; Rats; Rats, Wistar; Vasoconstriction

2001
Inhibition of endotoxin-induced vascular hyporeactivity by 4-amino-tetrahydrobiopterin.
    British journal of pharmacology, 2000, Volume: 131, Issue:8

    The 4-amino analogue of tetrahydrobiopterin (4-ABH(4)) is a potent pterin-site inhibitor of nitric oxide synthases (NOS). Although 4-ABH(4) does not exhibit selectivity between purified NOS isoforms, a pronounced selectivity of the drug towards inducible NOS (iNOS) is apparent in intact cells. This work was carried out to investigate the potential iNOS selectivity of 4-ABH(4) in isolated pig pulmonary and coronary arteries. Endothelium-dependent relaxations of pig pulmonary and coronary artery strips to bradykinin or calcium ionophore A23187 were inhibited by 4-ABH(4) in a concentration-dependent manner. Half-maximal inhibition was observed at 60 - 65 microM (pulmonary artery) and 200 - 250 microM 4-ABH(4) (coronary artery). Pig coronary artery strips precontracted with 0.1 microM 9, 11-dideoxy-9, 11-methanoepoxy-prosta-glandin F(2alpha) (U46619) showed a time-dependent relaxation (monitored for up to 18 h) upon incubation with 1 microg ml(-1) lipopolysaccharide (LPS). Addition of 10 microM 4-ABH(4) 1 h after LPS led to a pronounced inhibition of the LPS-triggered relaxation, whereas the pterin antagonist had no effect when given> or =4 h after LPS. Incubation of pulmonary and coronary artery strips with 1 microg ml(-1) LPS attenuated contractile responses to norepinephrine (1 microM) and U46619 (0.1 microM). This hyporeactivity of the blood vessels to vasoconstrictor agents was inhibited by 4-ABH(4) in a concentration-dependent manner [IC(50)=17.5+/-5.9 microM (pulmonary artery) and 20.7+/-3 microM (coronary artery)]. The effect of 0.1 mM 4-ABH(4) was antagonized by coincubation with 0.1 mM sepiapterin, which is known to supply intracellular BH(4) via a salvage pathway. These results demonstrate that 4-ABH(4) is a fairly selective inhibitor of iNOS in an in vitro model of endotoxaemia, suggesting that this drug and/or related pterin-site NOS inhibitors may be useful to increase blood pressure in severe infections associated with a loss of vascular responsiveness to constrictor agents caused by endotoxin-triggered iNOS induction in the vasculature.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Biopterins; Bradykinin; Calcimycin; Coronary Vessels; Dose-Response Relationship, Drug; Endothelium, Vascular; Endotoxins; Enzyme Inhibitors; Hydrazines; In Vitro Techniques; Lipopolysaccharides; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitroarginine; Nitrogen Oxides; Norepinephrine; Pteridines; Pterins; Pulmonary Artery; Swine; Vasoconstriction; Vasoconstrictor Agents; Vasodilation

2000