nitroarginine and sapropterin

nitroarginine has been researched along with sapropterin* in 25 studies

Reviews

1 review(s) available for nitroarginine and sapropterin

ArticleYear
Scintillation proximity assay to measure nitroarginine and tetrahydrobiopterin binding to heme domain of neuronal nitric oxide synthase.
    Methods in enzymology, 1999, Volume: 301

    Topics: Animals; Biological Assay; Biopterins; Heme; Humans; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitroarginine; Protein Binding

1999

Other Studies

24 other study(ies) available for nitroarginine and sapropterin

ArticleYear
GTP cyclohydrolase I/BH4 pathway protects EPCs via suppressing oxidative stress and thrombospondin-1 in salt-sensitive hypertension.
    Hypertension (Dallas, Tex. : 1979), 2010, Volume: 56, Issue:6

    Endothelial progenitor cells (EPCs) are both reduced and dysfunctional in hypertension that correlates inversely with its mortality, but the mechanisms are poorly understood. Endothelial nitric oxide synthase (eNOS) critically regulates EPC mobilization and function but is uncoupled in salt-sensitive hypertension because of the reduced cofactor tetrahydrobiopterin (BH4). We tested the hypothesis that GTP cyclohydrolase I (GTPCH I), the rate-limiting enzyme of BH4 de novo synthesis, protects EPCs and its function in deoxycorticosterone acetate (DOCA)-salt mice. EPCs were isolated from peripheral blood and bone marrow of wild-type (WT), WT DOCA-salt, endothelial-specific GTPCH transgenic (Tg-GCH), GTPCH transgenic DOCA-salt, and BH4-deficient hph-1 mice. In WT DOCA-salt and hph-1 mice, EPCs were significantly decreased with impaired angiogenesis and adhesion, which were restored in Tg-GCH DOCA-salt mice. Superoxide (O₂⁻) and nitric oxide (NO) levels in EPCs were elevated and reduced, respectively, in WT DOCA-salt and hph-1 mice; both were rescued in Tg-GCH DOCA-salt mice. eNOS(-/-)/GCH(+/-) hybrid mice demonstrated that GTPCH preserved the circulating EPC number, reduced intracellular O₂⁻ in EPCs, and ameliorated EPC dysfunction independent of eNOS in DOCA-salt hypertension. Secreted thrombospondin-1 (TSP-1; a potent angiogenesis inhibitor) from EPCs was elevated in WT DOCA-salt and hph-1 but not DOCA-salt Tg-GCH mice. In vitro treatment with BH4, polyethylene glycol-superoxide dismutase (PEG-SOD), or Nomega-nitro-L-arginine (L-NNA) significantly augmented NO and reduced TSP-1 and O₂⁻ levels from EPCs of WT DOCA-salt mice. These results demonstrated, for the first time, that the GTPCH/BH4 pathway critically regulates EPC number and function in DOCA-salt hypertensive mice, at least in part, via suppressing TSP-1 expression and oxidative stress.

    Topics: Angiogenesis Inhibitors; Animals; Biopterins; Cell Adhesion; Desoxycorticosterone; GTP Cyclohydrolase; Hypertension; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neovascularization, Physiologic; Nitric Oxide; Nitric Oxide Synthase Type III; Nitroarginine; Oxidative Stress; Polyethylene Glycols; Stem Cells; Superoxide Dismutase; Superoxides; Thrombospondin 1

2010
Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes.
    Diabetes, 2007, Volume: 56, Issue:3

    Uncoupling of the endothelial nitric oxide synthase (eNOS) resulting in superoxide anion (O(2)(-)) formation instead of nitric oxide (NO) causes diabetic endothelial dysfunction. eNOS regulates mobilization and function of endothelial progenitor cells (EPCs), key regulators of vascular repair. We postulate a role of eNOS uncoupling for reduced number and function of EPC in diabetes. EPC levels in diabetic patients were significantly reduced compared with those of control subjects. EPCs from diabetic patients produced excessive O(2)(-) and showed impaired migratory capacity compared with nondiabetic control subjects. NOS inhibition with N(G)-nitro-l-arginine attenuated O(2)(-) production and normalized functional capacity of EPCs from diabetic patients. Glucose-mediated EPC dysfunction was protein kinase C dependent, associated with reduced intracellular BH(4) (tetrahydrobiopterin) concentrations, and reversible after exogenous BH(4) treatment. Activation of NADPH oxidases played an additional but minor role in glucose-mediated EPC dysfunction. In rats with streptozotocin-induced diabetes, circulating EPCs were reduced to 39 +/- 5% of controls and associated with uncoupled eNOS in bone marrow. Our results identify uncoupling of eNOS in diabetic bone marrow, glucose-treated EPCs, and EPCs from diabetic patients resulting in eNOS-mediated O(2)(-) production. Subsequent reduction of EPC levels and impairment of EPC function likely contributes to the pathogenesis of vascular disease in diabetes.

    Topics: Aged; Animals; Biopterins; Bone Marrow; Cell Movement; Cells, Cultured; Diabetes Mellitus, Experimental; Endothelial Cells; Female; Humans; Male; Nitric Oxide Synthase Type III; Nitroarginine; Protein Kinase C; Rats; Rats, Wistar; Reactive Oxygen Species; Stem Cells

2007
Effect of 5-lipoxygenase blockade on blood pressure and acetylcholine-evoked endothelium-dependent contraction in aorta from spontaneously hypertensive rats.
    Journal of hypertension, 2006, Volume: 24, Issue:1

    Cysteinyl leukotrienes (cysLT) are pro-inflammatory and vasoactive products suspected to be involved in the regulation of vascular tone and blood pressure in hypertension.. We investigated, in spontaneously hypertensive rats (SHR), the involvement of cysLT in the in-vivo regulation of blood pressure and the in-vitro endothelium-dependent contraction to acetylcholine in isolated aorta.. SHR and Wistar-Kyoto rats (WKY) were orally treated for 3 weeks with either the cysLT biosynthesis inhibitor MK-886 (0.1 mg/ml) or vehicle. After mean arterial blood pressure (MABP) measurement, aortic ring preparations were removed from all groups of animals, and contractions and relaxations were monitored subsequent to stimulation with acetylcholine.. MABP was higher in SHR. Chronic treatment with MK-886 did not alter MABP in either SHR or WKY. In the presence of the N-nitro-L-arginine (L-NA, 100 micromol/l), and on prostaglandin F2alpha (PGF2alpha)-induced tone, acetylcholine evoked concentration-dependent contractions in intact aortic rings from SHR only. Pretreatment with either MK-886 (10 micromol/l), the 5-lipoxygenase (5-LO) inhibitor AA861 (10 micromol/l), or the cysLT1 receptor antagonist MK571 (1 micromol/l) reduced (P < 0.05) acetylcholine-induced contractions in intact aortic rings from SHR only. Acetylcholine-induced contractions were weaker (P < 0.01) in SHR chronically treated with MK-886 than in SHR. In the presence of L-NA, leukotriene (LT) D4 induced greater (P < 0.05) concentration-dependent contractions in aortic rings from SHR than from WKY. MK571 abolished LTD4-evoked contractions.. These data suggested that 5-LO-derived products, through the activation of cysLT1 receptors, could be involved in the endothelium-dependent contraction to acetylcholine in aorta from SHR but not in the regulation of MABP in SHR.

    Topics: Acetylcholine; Animals; Aorta, Thoracic; Arachidonate 5-Lipoxygenase; Benzoquinones; Biopterins; Blood Pressure; Body Weight; Dinoprost; Endothelium, Vascular; Hypertension; Indoles; Leukotriene D4; Lipoxygenase Inhibitors; Male; Membrane Proteins; Nitroarginine; Propionates; Quinolines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, Leukotriene; Vasoconstriction

2006
Reduced NOS3 phosphorylation mediates reduced NO/cGMP signaling in mesenteric arteries of deoxycorticosterone acetate-salt hypertensive rats.
    Hypertension (Dallas, Tex. : 1979), 2004, Volume: 43, Issue:5

    Salt-sensitive hypertension is associated with impaired NO/cGMP signaling. We hypothesized that increased superoxide production by NADPH oxidase and altered endothelial NO synthase (NOS3) phosphorylation determine endothelial dysfunction in hypertension. Experiments tested if NO/cGMP signaling and NOS3 serine phosphorylation are decreased and NADPH oxidase activity is increased in mesenteric arteries from deoxycorticosterone acetate (DOCA)-salt rats compared with arteries from placebo rats. Concentration response curves to phenylephrine were performed in mesenteric arteries in the presence and absence of Nomega-nitro-L-arginine (LNA) and antioxidants to determine the influence of basal NO and superoxide production on vascular tone. LNA increased phenylephrine sensitivity in arteries from placebo, but not DOCA-salt rats, regardless of antioxidant treatment. To determine basal cGMP production, mesenteric arteries were incubated with 3-isobutyl-1-methylxanthine in the presence or absence of LNA, sodium nitroprusside (SNP), antioxidants, or tetrahydrobiopterin. NOS-dependent cGMP production was reduced in arteries from DOCA-salt rats compared with arteries from placebo rats and was not restored by acute treatment with antioxidants or tetrahydrobiopterin. SNP-induced cGMP production was similar between groups as was NADPH oxidase activity, measured by lucigenin chemiluminescence, in mesenteric arteries. Expression and phosphorylation of NOS3 were examined by Western blotting. Phosphorylation of NOS3 was decreased in arteries from DOCA-salt rats compared with placebo at serine residues 1179 and 635. These findings indicate that diminished NO/cGMP signaling in mesenteric arteries from DOCA-salt rats is caused by reduced phosphorylation of NOS3 at serine 1179 and serine 635, rather than NO scavenging by superoxide.

    Topics: Adrenergic alpha-Agonists; Animals; Antioxidants; Biopterins; Codon; Cyclic GMP; Desoxycorticosterone; Hypertension; Male; Mesenteric Arteries; NADPH Oxidases; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Nitroarginine; Nitroprusside; Phenylephrine; Phosphorylation; Phosphoserine; Polyethylene Glycols; Protein Processing, Post-Translational; Rats; Rats, Sprague-Dawley; Signal Transduction; Sodium Chloride, Dietary; Superoxide Dismutase

2004
Specific potentiation of endothelium-dependent contractions in SHR by tetrahydrobiopterin.
    Hypertension (Dallas, Tex. : 1979), 2003, Volume: 41, Issue:1

    This study was designed to determine the effect of pteridines, R- and S-tetrahydrobiopterin, sepiapterin, and dihydrobiopterin on endothelium-dependent contractions to acetylcholine in isolated aortas from spontaneously hypertensive rat and normotensive Wistar-Kyoto rat. The noncumulative addition of redox-active pteridines R- and S-tetrahydrobiopterin (but not the oxidized analogues sepiapterin and dihydrobiopterin) produced a concentration-dependent transient contraction in isolated aortic rings from both normotensive and hypertensive rats. R- and S-tetrahydrobiopterin (but not sepiapterin or dihydrobiopterin) potentiated the endothelium-dependent contractions to acetylcholine but only in aortas from hypertensive rats and in the presence of N(G)-nitro-L-arginine. In these aortas, the generation of oxygen-derived free radicals by the combination of xanthine plus xanthine oxidase also potentiated the endothelium-dependent contractions to acetylcholine. The presence of R-tetrahydrobiopterin did not alter the characteristics of the endothelium-dependent contractions because they were inhibited by valeryl salicylate, an inhibitor of cyclooxygenase-1, by S18886, a TP-receptor antagonist or by Tiron, a cell permeable superoxide anion scavenger. However, the contractions to acetylcholine, which are unaffected by the combination of superoxide dismutase and catalase, become significantly inhibited by these two scavengers in the presence of R-tetrahydrobiopterin. In the presence of N(G)-nitro-L-arginine, R-tetrahydrobiopterin did not affect the contractions to phenylephrine, U 46619, or to oxygen-derived free radicals generated by xanthine plus xanthine oxidase. These results indicate that the production of superoxide by the autoxidation of tetrahydrobiopterin selectively enhances endothelium-dependent contractions in the spontaneously hypertensive rat when nitric oxide synthase is inhibited.

    Topics: Acetylcholine; Animals; Aorta; Biopterins; Culture Techniques; Dithiothreitol; Dose-Response Relationship, Drug; Drug Synergism; Endothelium, Vascular; Enzyme Inhibitors; Hypertension; Nitric Oxide Synthase; Nitroarginine; Pteridines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Reactive Oxygen Species; Reducing Agents; Vasoconstriction; Vasodilation

2003
Glucocorticoids inhibit tetrahydrobiopterin-dependent endothelial function.
    Experimental biology and medicine (Maywood, N.J.), 2001, Volume: 226, Issue:1

    Tetrahydrobiopterin (BH4) acts as an important co-factor for endothelial nitric oxide synthase (eNOS). Glucocorticoids have been shown to inhibit expression of the rate-limiting enzyme for tetrahydrobiopterin synthesis, GTP cyclohydrolase, in other cell types. We hypothesized that endothelium-dependent vasodilator responses would be blunted in rats made hypertensive with dexamethasone. Further, we hypothesized that treatment of rat vascular segments with dexamethasone would result in attenuation of endothelial function accompanied by decreased GTP cyclohydrolase expression. We report that endothelium-dependent relaxation responses to the calcium ionophore A23187 are reduced in aortic rings from dexamethasone-hypertensive rats compared with sham values. Dexamethasone incubation abolishes contraction to Nomega-nitro-L-arginine (L-NNA, 10(-5) M) in endothelium-intact aortic rings, and inhibits expression of GTP cyclohydrolase. We conclude that inhibition of BH4 synthesis by glucocorticoid regulation of GTP cyclohydrolase expression may contribute to reduced endothelium-dependent vasodilation characteristic of glucocorticoid-induced hypertension.

    Topics: Animals; Aorta, Thoracic; Biopterins; Dexamethasone; Endothelium, Vascular; Glucocorticoids; GTP Cyclohydrolase; Male; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Nitroarginine; Phenylephrine; Pteridines; Pterins; Rats; Rats, Wistar; Vasoconstriction

2001
Crystal structure of nitric oxide synthase bound to nitro indazole reveals a novel inactivation mechanism.
    Biochemistry, 2001, Nov-13, Volume: 40, Issue:45

    Nitric oxide is generated under normal and pathophysiological conditions by three distinct isoforms of nitric oxide synthase (NOS). A small-molecule inhibitor of NOS (3-Br-7-nitroindazole, 7-NIBr) is profoundly neuroprotective in mouse models of stroke and Parkinson's disease. We report the crystal structure of the catalytic heme domain of endothelial NOS complexed with 7-NIBr at 1.65 A resolution. Critical to the binding of 7-NIBr at the substrate site is the adoption by eNOS of an altered conformation, in which a key glutamate residue swings out toward one of the heme propionate groups. Perturbation of the heme propionate ensues and eliminates the cofactor tetrahydrobiopterin-heme interaction. We also present three crystal structures that reveal how alterations at the substrate site facilitate 7-NIBr and structurally dissimilar ligands to occupy the cofactor site.

    Topics: Binding Sites; Biopterins; Crystallization; Crystallography, X-Ray; Drug Design; Enzyme Inhibitors; Indazoles; Models, Molecular; Nitric Oxide Synthase; Nitroarginine; Protein Conformation; Substrate Specificity

2001
Vascular dysfunction and myocardial contractility in the JCR:LA-corpulent rat.
    Cardiovascular research, 2000, Volume: 47, Issue:1

    The JCR:LA-corpulent rat is a unique animal model of human vascular disease that exhibits a profound insulin resistance, vasculopathy, and cardiovascular dysfunction. We tested the hypothesis that the defects affect endothelial and smooth muscle function of the coronary microvasculature as well as cardiac contractility. Coronary, myocardial and aortic function were assessed in obese (homozygous for the cp gene, cp/cp) and lean (heterozygous or homozygous normal, +/?) littermates aged 7 and 18 weeks.. Coronary endothelial relaxation was examined in isolated perfused hearts by determining the effect of bradykinin (0. 1-1000 nmol l(-1)) on coronary perfusion pressure (CPP), myocardial mechanical function was evaluated in terms of left-ventricular developed pressure (LVDevP), and aortic relaxation with the endothelium-dependent agonist, A 23187 (1-1000 nmol l(-1)).. In rats aged 7 weeks, bradykinin reduced CPP from 133+/-1 mmHg to 43+/-1 mmHg (-67%) in lean rats, but only to 64+/-3 mmHg (-52%) in corpulent rats (n=6, P<0.05). Similar differences were found in rats aged 18 weeks (n=8). Inhibition of NO synthase with N(G)-nitro-L-arginine (L-NNA; 0.2 mmol l(-1)) impaired, and tetrahydrobiopterin (0.1 mmol l(-1)), a NO synthase cofactor, restored relaxation in cp/cp rats. Spermine/NO equally reduced CPP in both groups (-58%). Mechanical function was similar in lean and corpulent rats, aortic endothelial relaxation was attenuated by approximately 30% and aortic smooth muscle function was normal (7 weeks) or improved (18 weeks) in the cp/cp genotype.. These results suggest that (i) there is a specific impairment of NO-mediated relaxation of the coronary resistance vessels in the JCR:LA-corpulent rat that is not associated with impaired baseline myocardial contractility, and (ii) exogenous tetrahydrobiopterin reversed the relaxation defects that are part of the vascular complications typical for the insulin resistance syndrome.

    Topics: Animals; Antioxidants; Aorta, Thoracic; Biopterins; Bradykinin; Calcimycin; Dose-Response Relationship, Drug; Endothelium, Vascular; Enzyme Inhibitors; In Vitro Techniques; Insulin Resistance; Ionophores; Male; Microcirculation; Myocardial Contraction; Nitric Oxide Synthase; Nitroarginine; Obesity; Perfusion; Rats; Rats, Inbred Strains

2000
Inhibition of endotoxin-induced vascular hyporeactivity by 4-amino-tetrahydrobiopterin.
    British journal of pharmacology, 2000, Volume: 131, Issue:8

    The 4-amino analogue of tetrahydrobiopterin (4-ABH(4)) is a potent pterin-site inhibitor of nitric oxide synthases (NOS). Although 4-ABH(4) does not exhibit selectivity between purified NOS isoforms, a pronounced selectivity of the drug towards inducible NOS (iNOS) is apparent in intact cells. This work was carried out to investigate the potential iNOS selectivity of 4-ABH(4) in isolated pig pulmonary and coronary arteries. Endothelium-dependent relaxations of pig pulmonary and coronary artery strips to bradykinin or calcium ionophore A23187 were inhibited by 4-ABH(4) in a concentration-dependent manner. Half-maximal inhibition was observed at 60 - 65 microM (pulmonary artery) and 200 - 250 microM 4-ABH(4) (coronary artery). Pig coronary artery strips precontracted with 0.1 microM 9, 11-dideoxy-9, 11-methanoepoxy-prosta-glandin F(2alpha) (U46619) showed a time-dependent relaxation (monitored for up to 18 h) upon incubation with 1 microg ml(-1) lipopolysaccharide (LPS). Addition of 10 microM 4-ABH(4) 1 h after LPS led to a pronounced inhibition of the LPS-triggered relaxation, whereas the pterin antagonist had no effect when given> or =4 h after LPS. Incubation of pulmonary and coronary artery strips with 1 microg ml(-1) LPS attenuated contractile responses to norepinephrine (1 microM) and U46619 (0.1 microM). This hyporeactivity of the blood vessels to vasoconstrictor agents was inhibited by 4-ABH(4) in a concentration-dependent manner [IC(50)=17.5+/-5.9 microM (pulmonary artery) and 20.7+/-3 microM (coronary artery)]. The effect of 0.1 mM 4-ABH(4) was antagonized by coincubation with 0.1 mM sepiapterin, which is known to supply intracellular BH(4) via a salvage pathway. These results demonstrate that 4-ABH(4) is a fairly selective inhibitor of iNOS in an in vitro model of endotoxaemia, suggesting that this drug and/or related pterin-site NOS inhibitors may be useful to increase blood pressure in severe infections associated with a loss of vascular responsiveness to constrictor agents caused by endotoxin-triggered iNOS induction in the vasculature.

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Biopterins; Bradykinin; Calcimycin; Coronary Vessels; Dose-Response Relationship, Drug; Endothelium, Vascular; Endotoxins; Enzyme Inhibitors; Hydrazines; In Vitro Techniques; Lipopolysaccharides; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitroarginine; Nitrogen Oxides; Norepinephrine; Pteridines; Pterins; Pulmonary Artery; Swine; Vasoconstriction; Vasoconstrictor Agents; Vasodilation

2000
Presence of excess tetrahydrobiopterin during nitric oxide production from inducible nitric oxide synthase in LPS-treated rat aorta.
    Life sciences, 1999, Volume: 65, Issue:26

    Tetrahydrobiopterin (BH4) is one of the cofactors of nitric oxide synthase (NOS), and the synthesis of BH4 is induced as well as inducible NOS (iNOS) by lipopolysaccharide (LPS) and/or cytokines. BH4 has a protective effect against the cytotoxicity induced by nitric oxide (NO) and/or reactive oxygen species in various types of cells. The purpose of this study was to examine whether or not an excess of BH4 is present during the production of NO by iNOS in LPS-treated de-endothelialized rat aorta. Addition of LPS (10 microg/ml) to the aorta bath solution caused L-arginine (L-Arg)-induced relaxation from 1.5 hr after the addition of LPS in de-endothelialized rat aorta pre-contracted with 30 mM KCl. The L-Arg-induced relaxation was prevented by NOS inhibitors. BH4 content also increased from 3 hr after the addition of LPS. mRNAs of iNOS and GTP cyclohydrolase I (GTPCH), a rate-limiting enzyme of BH4 synthesis, were increased from 1.5 hr after addition of LPS. Although the expression of iNOS and GTPCH mRNAs was observed in the media, the expression levels in the media were much lower than those in the adventitia. Ten millimolar 2,4-diamino-6-hydroxypyrimidine (DAHP), an inhibitor of GTPCH, strongly reduced L-Arg-induced relaxation, and decreased BH4 content to below the basal level in LPS-treated aorta, whereas 0.5 mM DAHP reduced the LPS-induced increase in BH4 content to the basal level but did not affect L-Arg-induced relaxation. The inhibition of L-Arg-induced relaxation by 10 mM DAHP was overcome by the addition of BH4 (10 microM). These results suggest that although BH4 is essential for NO production from iNOS, the increase in BH4 content above the basal level is not needed for eliciting L-Arg-induced relaxation by the treatment with LPS. Thus, an excess amount of BH4 may be synthesized during NO production by iNOS in LPS-treated rat aorta.

    Topics: Animals; Aorta, Thoracic; Arginine; Biopterins; Endothelium, Vascular; Glyceraldehyde-3-Phosphate Dehydrogenases; GTP Cyclohydrolase; Guanidines; Hypoxanthines; In Vitro Techniques; Lipopolysaccharides; Male; Muscle Relaxation; Muscle, Smooth, Vascular; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitroarginine; Rats; RNA, Messenger

1999
Nitroarginine and tetrahydrobiopterin binding to the haem domain of neuronal nitric oxide synthase using a scintillation proximity assay.
    The Biochemical journal, 1998, May-15, Volume: 332 ( Pt 1)

    Nitric oxide synthases (NOS) have a bidomain structure comprised of an N-terminal oxygenase domain and a C-terminal reductase domain. The oxygenase domain binds haem, (6R)-5,6,7,8-tetrahydro-l-biopterin (tetrahydrobiopterin) and arginine, is the site where nitric oxide synthesis takes place and contains determinants for dimeric interactions. A novel scintillation proximity assay has been established for equilibrium and kinetic measurements of substrate, inhibitor and cofactor binding to a recombinant N-terminal haem-binding domain of rat neuronal NOS (nNOS). Apparent Kd values for nNOS haem-domain-binding of arginine and Nomega-nitro-L-arginine (nitroarginine) were measured as 1.6 microM and 25 nM respectively. The kinetics of [3H]nitroarginine binding and dissociation yielded an association rate constant of 1.3x10(4) s-1.M-1 and a dissociation rate constant of 1.2x10(-4) s-1. These values are comparable to literature values obtained for full-length nNOS, suggesting that many characteristics of the arginine binding site of NOS are conserved in the haem-binding domain. Additionally, apparent Kd values were compared and were found to be similar for the inhibitors, L-NG-monomethylarginine, S-ethylisothiourea, N-iminoethyl-L-ornithine, imidazole, 7-nitroindazole and 1400W (N-[3-(aminomethyl) benzyl] acetamidine). [3H]Tetrahydrobiopterin bound to the nNOS haem domain with an apparent Kd of 20 nM. Binding was inhibited by 7-nitroindazole and stimulated by S-ethylisothiourea. The kinetics of interaction with tetrahydrobiopterin were complex, showing a triphasic binding process and a single off rate. An alternating catalytic site mechanism for NOS is proposed.

    Topics: Animals; Arginine; Binding Sites; Binding, Competitive; Biopterins; Enzyme Inhibitors; Heme; Indazoles; Isothiuronium; Kinetics; Nitric Oxide Synthase; Nitroarginine; Oxidoreductases; Oxygenases; Peptide Fragments; Protein Binding; Rats; Recombinant Fusion Proteins

1998
Haem insertion, dimerization and reactivation of haem-free rat neuronal nitric oxide synthase.
    The Biochemical journal, 1998, Jun-01, Volume: 332 ( Pt 2)

    The nitric oxide synthases are dimeric enzymes in which the intersubunit contacts are formed by the P-450-haem-containing, tetrahydrobiopterin-dependent oxygenase domain. The dimerization of the neuronal isoenzyme was shown previously to be triggered by Fe-protoporphyrin IX (haemin). We report for the first time the reactivation of the haem-deficient neuronal isoenzyme (from rat, expressed in a baculovirus/insect cell system) after haem reconstitution. We further examined the reconstitution of the enzyme with protoporphyrin IX (PPIX) and its Mn and Co complexes. All of these porphyrins inserted into the haem pocket, as assessed by quenching of intrinsic protein fluorescence. In addition to haemin, MnPPIX stimulated dimerization, as measured by gel filtration and by cross-linking with glutaraldehyde. In contrast, neither CoPPIX nor PPIX stimulated dimerization. The absorbance spectra of the reconstituted enzymes were measured and compared with published results on P-450 enzymes reconstituted with the same metals. The results suggest that those metalloporphyrins which caused dimerization were able to acquire a thiolate ligand from the protein, and we propose that this ligation is the trigger for dimerization. Substrate and tetrahydrobiopterin binding sites only emerged with the metalloporphyrins that caused dimerization.

    Topics: Animals; Baculoviridae; Binding Sites; Biopterins; Cross-Linking Reagents; Dimerization; Enzyme Activation; Flavoproteins; Glutaral; Heme; Manganese; Nitric Oxide Synthase; Nitroarginine; Porphyrins; Rats; Recombinant Proteins; Spectrometry, Fluorescence; Spectrophotometry

1998
Synthesis and screening of conformationally restricted and conformationally free N-(tertiary aminoalkyl)dithiocarbamic acids and esters as inhibitors of neuronal nitric oxide synthase.
    Bioorganic & medicinal chemistry, 1998, Volume: 6, Issue:10

    N-(Tertiary aminoalkyl)dithiocarbamic acids and esters were synthesized and evaluated for their ability to inhibit neuronal nitric oxide synthase. Preliminary results show these compounds are able to act at the binding site for L-arginine and the conformationally restricted esters may have a second site of activity involving the cofactor (6R)-5,6,7,8-tetrahydro-L-biopterin.

    Topics: Animals; Binding Sites; Binding, Competitive; Biopterins; Enzyme Inhibitors; Humans; Neurons; Nitric Oxide Synthase; Nitroarginine; Rats; Structure-Activity Relationship; Thiocarbamates

1998
Cysteine-200 of human inducible nitric oxide synthase is essential for dimerization of haem domains and for binding of haem, nitroarginine and tetrahydrobiopterin.
    The Biochemical journal, 1997, Apr-01, Volume: 323 ( Pt 1)

    Nitric oxide synthase (EC 1.14.13.39) is a homodimer. Limited proteolysis has previously shown that it consists of two major domains. The C-terminal or reductase domain binds FMN, FAD and NADPH. The N-terminal or oxygenase domain is known to bind arginine, (6R)-5,6,7,8-tetrahydro-l-biopterin (tetrahydrobiopterin) and haem. The exact residues of the inducible nitric oxide synthase (iNOS) protein involved in binding to these molecules have yet to be identified, although the haem moiety is known to be co-ordinated through a cysteine thiolate ligand. We have expressed two forms of the haem-binding domain of human iNOS (residues 1-504 and 59-504) in Escherichia coli as glutathione S-transferase (GST) fusion proteins. The iNOS 1-504 and 59-504 fusion proteins bound similar amounts of haem, Nomega-nitro-l-arginine (nitroarginine) and tetrahydrobiopterin, showing that the first 58 residues are not required for binding these factors. Using site-directed mutagenesis we have mutated Cys-200, Cys-217, Cys-228, Cys-290, Cys-384 and Cys-457 to alanine residues within the iNOS 59-504 haem-binding domain. Mutation of Cys-200 resulted in a complete loss of haem, nitroarginine and tetrahydrobiopterin binding. Mutants of Cys-217, Cys-228, Cys-290, Cys-384 or Cys-457 showed no effect on the haem content of the fusion protein, no effect on the reduced CO spectral peak (444 nm) and were able to bind nitroarginine and tetrahydrobiopterin at levels equivalent to the wild-type fusion protein. After removal of the GST polypeptide, the wild-type iNOS 59-504 domain was dimeric, whereas the C200A mutant form was monomeric. When the mutated domains were incorporated into a reconstructed full-length iNOS protein expressed in Xenopus oocytes, only the Cys-200 mutant showed a loss of catalytic activity: all the other mutant iNOS proteins showed near wild-type enzymic activity. From this systematic approach we conclude that although Cys-217, Cys-228, Cys-290, Cys-384 and Cys-457 are conserved in all three NOS isoforms they are not essential for cofactor or substrate binding or for enzymic activity of iNOS, and that Cys-200 provides the proximal thiolate ligand for haem binding in human iNOS.

    Topics: Animals; Antioxidants; Binding Sites; Biopterins; Cysteine; Dimerization; DNA; Enzyme Induction; Heme; Humans; Nitric Oxide Synthase; Nitroarginine; Protein Conformation; Recombinant Fusion Proteins; Xenopus

1997
Reduction of quinonoid dihydrobiopterin to tetrahydrobiopterin by nitric oxide synthase.
    The Journal of biological chemistry, 1996, Feb-23, Volume: 271, Issue:8

    Rat cerebellar nitric oxide synthase (NOS) purified from transfected human kidney cells catalyzes an NADPHdependent reduction of quinonoid dihydrobiopterin (qBH2) to tetrahydrobiopterin (BH4). Reduction of qBH2 at 25 microM proceeds at a rate that is comparable with that of the overall reaction (citrulline synthesis) and requires calcium ions and calmodulin for optimal activity; NADH has only 10% of the activity of NADPH. The reduction rate with the quinonoid form of 6-methyldihydropterin is approximately twice that with qBH2. 7,8-Dihydrobiopterin had negligible activity. Neither 7,8-dihydrobiopterin nor BH4 affected the rate of qBH2 reduction. Reduction is inhibited by the flavoprotein inhibitor diphenyleneiodonium, whereas inhibitors of electron transfer through heme (7-nitroindazole and N-nitroarginine) stimulated the rate to a small extent. Methotrexate, which inhibits a variety of enzymes catalyzing dihydrobiopterin reduction, did not inhibit. These studies provide the first demonstration of the reduction of qBH2 to BH4 by NOS and indicate that the reduction is catalyzed by the flavoprotein "diaphorase" activity of NOS. This activity is located on the reductase (C-terminal) domain, whereas the high affinity BH4 site involved in NOS activation is located on the oxygenase (N-terminal) domain. The possible significance of this reduction of qBH2 to the essential role of BH4 in NOS is discussed.

    Topics: Animals; Arginine; Biopterins; Cell Line; Cerebellum; Enzyme Inhibitors; Humans; Indazoles; Kidney; Kinetics; Methotrexate; NADP; Nitric Oxide Synthase; Nitroarginine; Onium Compounds; Oxidation-Reduction; Rats; Recombinant Proteins; Transfection

1996
Characterization of heme-deficient neuronal nitric-oxide synthase reveals a role for heme in subunit dimerization and binding of the amino acid substrate and tetrahydrobiopterin.
    The Journal of biological chemistry, 1996, Mar-29, Volume: 271, Issue:13

    Neuronal nitric-oxide (NO) synthase contains FAD, FMN, heme, and tetrahydrobiopterin as prosthetic groups and represents a multifunctional oxidoreductase catalyzing oxidation of L-arginine to L-citrulline and NO, reduction of molecular oxygen to superoxide, and electron transfer to cytochromes. To investigate how binding of the prosthetic heme moiety is related to enzyme activities, cofactor, and L-arginine binding, as well as to secondary and quaternary protein structure, we have purified and characterized heme-deficient neuronal NO synthase. The heme-deficient enzyme, which had preserved its cytochrome c reductase activity, contained FAD and FMN, but virtually no tetrahydrobiopterin, and exhibited only marginal NO synthase activity. By means of gel filtration and static light scattering, we demonstrate that the heme-deficient enzyme is a monomer and provide evidence that heme is the sole prosthetic group controlling the quaternary structure of neuronal NO synthase. CD spectroscopy showed that most of the structural elements found in the dimeric holoenzyme were conserved in heme-deficient monomeric NO synthase. However, in spite of being properly folded, the heme-deficient enzyme did bind neither tetrahydrobiopterin nor the substrate analog N(G)-nitro-L-arginine. Our results demonstrate that the prosthetic heme group of neuronal NO synthase is requisite for dimerization of enzyme subunits and for the binding of amino acid substrate and tetrahydrobiopterin.

    Topics: Animals; Arginine; Binding Sites; Biopterins; Brain; Chromatography, Gel; Circular Dichroism; Citrulline; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Heme; Isoenzymes; Light; Macromolecular Substances; Neurons; Nitric Oxide Synthase; Nitroarginine; Protein Conformation; Protein Structure, Secondary; Rats; Scattering, Radiation; Thermodynamics

1996
Identification of the domains of neuronal nitric oxide synthase by limited proteolysis.
    The Biochemical journal, 1996, Feb-15, Volume: 314 ( Pt 1)

    Nitric oxide synthase (EC 1.14.13.39) binds arginine and NADPH as substrates, and FAD, FMN, tetrahydrobiopterin, haem and calmodulin as cofactors. The protein consists of a central calmodulin-binding sequence flanked on the N-terminal side by a haem-binding region, analogous to cytochrome P-450, and on the C-terminal side by a region homologous with NADPH:cytochrome P-450 reductase. The structure of recombinant rat brain nitric oxide synthase was analysed by limited proteolyis. The products were identified by using antibodies to defined sequences, and by N-terminal sequencing. Low concentrations of trypsin produced three fragments, similar to those in a previous report [Sheta, McMillan and Masters (1994) J. Biol. Chem. 269, 15147-15153]: that of Mr approx. 135000 (N-terminus Gly-221) resulted from loss of the N-terminal extension (residues 1-220) unique to neuronal nitric oxide synthase. The fragments of Mr 90000 (haem region) and 80000 (reductase region, N-terminus Ala-728) were produced by cleavage within the calmodulin-binding region. With more extensive trypsin treatment, these species were shown to be transient, and three smaller, highly stable fragments of Mr 14000 (N-terminus Leu-744 within the calmodulin region), 60000 (N-terminus Gly-221) and 63000 (N-terminus Lys-856 within the FMN domain) were formed. The species of Mr approx. 60000 represents a domain retaining haem and nitroarginine binding. The two species of Mr 63000 and 14000 remain associated as a complex. This complex retains cytochrome c reductase activity, and thus is the complete reductase region, yet cleaved at Lys-856. This cleavage occurs within a sequence insertion relative to the FMN domain present in inducible nitric oxide synthase. Prolonged proteolysis treatment led to the production of a protein of Mr approx. 53000 (N-terminus Ala-953), corresponding to a cleavage between the FMN and FAD domains. The major products after chymotryptic digestion were similar to those with trypsin, although the pathway of intermediates differed. The haem domain was smaller, starting at residue 275, yet still retained the arginine binding site. These data have allowed us to identify stable domains representing both the arginine/haem-binding and the reductase regions.

    Topics: Amino Acid Sequence; Animals; Arginine; Binding Sites; Biopterins; Blotting, Western; Brain; Calmodulin; Chymotrypsin; Cytochrome c Group; Electrophoresis, Polyacrylamide Gel; Flavin Mononucleotide; Heme; Humans; Molecular Sequence Data; Molecular Weight; Nitric Oxide Synthase; Nitroarginine; Peptide Fragments; Rabbits; Rats; Recombinant Proteins; Trypsin

1996
Active-site structure analysis of recombinant human inducible nitric oxide synthase using imidazole.
    Biochemistry, 1996, Jul-23, Volume: 35, Issue:29

    Nitric oxide synthase catalyzes the pyridine nucleotide-dependent oxidation of L-arginine to nitric oxide and L-citrulline. It is a specialized cytochrome P450 monooxygenase that is sensitive to inhibition by imidazole. Steady-state kinetic studies on recombinant human inducible nitric oxide synthase (rH-iNOS) demonstrate that imidazole and 1-phenylimidazole are competitive and reversible inhibitors versus L-arginine. Structure-activity relationship and pH dependence studies on the inhibition suggest that the neutral form of imidazole may be the preferred species and that the only modifications allowed without the loss of inhibition are at the N-1 position of imidazole. Optical spectrophotometric studies of rH-iNOS with imidazole and 1-phenylimidazole yielded type II difference spectra exhibiting Kd values of 63 +/- 2 and 28 +/- 3 microM, respectively. These values were in good agreement with the steady-state Ki of 95 +/- 10 and 38 +/- 4 microM, respectively, and confirms the site of binding is at the sixth axial ligand of the heme. Imidazole (2.2 mM) also perturbed the Kd of L-arginine from 3.03 +/- 0.45 to 209 +/- 10 microM. The observed increase in the Kd for L-arginine is consistent with imidazole being a competitive inhibitor versus L-arginine. The IC50 values of imidazole and 1-phenylimidazole were lower in the absence of exogenous BH4, and both inhibitors also competitively inhibited the BH4-dependent activation of the enzyme. These data taken together suggest that the L-arginine, dioxygen, and the BH4 binding sites are in close proximity in rH-iNOS. Furthermore, these studies demonstrate the usefulness of imidazole compounds as active site probes for recombinant human iNOS.

    Topics: Arginine; Binding Sites; Biopterins; Enzyme Inhibitors; Humans; Hydrogen-Ion Concentration; Imidazoles; Isoenzymes; Kinetics; Molecular Structure; Nitric Oxide Synthase; Nitroarginine; Recombinant Proteins; Spectrophotometry; Structure-Activity Relationship

1996
Impairment of the nitric oxide/cyclic GMP pathway in cerebellar slices prepared from the hph-1 mouse.
    Brain research, 1996, Sep-30, Volume: 735, Issue:1

    In this study, the effect of tetrahydrobiopterin deficiency on the nitric oxide/cGMP pathway has been investigated in cerebellar slices derived from the hph-1 mouse. This animal displays a partial deficiency of tetrahydrobiopterin. Basal levels of cGMP were significantly reduced (-29.5%) in the hph-1 mouse cerebellum compared to controls. Following kainate stimulation (500 microM) cGMP levels increased in both control and hph-1 preparations but were again significantly lower (-29.1%) in the hph-1 mouse. Exposure of slices to the nitric oxide donors, S-nitroso-N-acetylpenicillamine and S-nitroso-glutathione, revealed no difference in cGMP accumulation between the two groups. These findings suggest that the cerebellar nitric oxide/cGMP pathway may be impaired in partial tetrahydrobiopterin deficiency states due to diminished nitric oxide formation.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Antioxidants; Biopterins; Cerebellum; Cyclic GMP; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutathione; Kainic Acid; Mice; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Mutant Strains; Mutation; Nitric Oxide; Nitroarginine; Nitroso Compounds; Organ Culture Techniques; Oxyhemoglobins; Penicillamine; Platelet Aggregation Inhibitors; S-Nitroso-N-Acetylpenicillamine; S-Nitrosoglutathione

1996
N-nitro-L-arginine and N-monomethyl-L-arginine exhibit a different pattern of inactivation toward the three nitric oxide synthases.
    Archives of biochemistry and biophysics, 1995, Jun-20, Volume: 320, Issue:1

    The ability of NG-nitro-L-arginine (NNA) and NG-methyl-L-arginine (NMMA) to inactivate native neuronal, endothelial cell, and macrophage nitric oxide synthases (nNOS, eNOS, and iNOS, respectively) was investigated. Each NOS isozyme (plus cofactors) was preincubated with either NNA or NMMA and then assayed for remaining activity by measuring the conversion of labeled L-arginine to labeled L-citrulline. Consistent with previous reports (Olken, N. M., et al., Biochem. Biophys. Res. Commun. 177, 828-833, 1991), NMMA was a mechanism-based irreversible inhibitor of iNOS, exhibiting time- and concentration-dependent inactivation of iNOS with a KI equal to 2.6 microM and a kinact equal to 0.042 min-1. When assayed without a preincubation period, NMMA exhibited typical reversible inhibition of iNOS (Ki = 3.9 microM). NMMA also reversibly inhibited nNOS and the eNOS with Ki equal to 0.65 and 0.7 microM, respectively. However, NMMA did not inactivate eNOS at concentrations up to 10 microM. In the presence, but not the absence, of 4 microM tetrahydrobiopterin, NMMA inactivated nNOS with a kinact equal to 0.022 min-1 and a KI equal to 2.0 microM. Since NNA did not inactivate iNOS at concentrations up to 25 microM, NNA is strictly a reversible inhibitor of iNOS (Ki = 8.1 microM). Neuronal NOS and eNOS, however, were rapidly inactivated by NNA with kintact equal to 0.083 and 0.047 min-1 and KI equal to 0.09 and 0.02 microM, respectively, when preincubated with NNA. Tetrahydrobiopterin did not affect the rate of inactivation of nNOS by NNA. In all cases, L-arginine protected against inactivation, suggesting that inactivation occurs at or near the active site. Thus, inactivation of the three NOS isozymes with NMMA and NNA reveals active-site differences between the isoforms.

    Topics: Amino Acid Oxidoreductases; Animals; Arginine; Binding Sites; Biopterins; Brain; In Vitro Techniques; Isoenzymes; Kinetics; Male; Models, Biological; Nitric Oxide Synthase; Nitroarginine; omega-N-Methylarginine; Rats; Rats, Sprague-Dawley

1995
A bacterial nitric oxide synthase from a Nocardia species.
    Biochemical and biophysical research communications, 1994, Sep-15, Volume: 203, Issue:2

    Nitric oxide synthase (EC 1.14.23) was discovered in a Nocardia species. The bacterial nitric oxide synthase was purified as much as 380 fold by affinity chromatography over 2',5'-ADP-agarose. The partially purified enzyme required NADPH, O2, CA++, FAD, FMN, and tetrahydrobiopterin as cofactors in the conversion of L-arginine to L-citrulline and nitric oxide. The apparent Km for L-arginine was determined to be 8.2 microM, and the Vmax was 840 nmole NADPH consumed/min/mg protein. The enzyme was competetively inhibited by NG-nitro-arginine with an apparent Ki of 14.6 microM. The experimental evidence provides confirmation of the first microbial nitric oxide synthase in microorganisms.

    Topics: Amino Acid Oxidoreductases; Arginine; Biopterins; Calcium; Citrulline; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; NADP; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Nocardia; Oxygen

1994
Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase.
    The Biochemical journal, 1992, Feb-01, Volume: 281 ( Pt 3)

    L-Arginine-derived nitric oxide (NO) acts as an inter- and intra-cellular signal molecule in many mammalian tissues including brain, where it is formed by a flavin-containing Ca2+/calmodulin-requiring NO synthase with NADPH, tetrahydrobiopterin (H4biopterin) and molecular oxygen as cofactors. We found that purified brain NO synthase acted as a Ca2+/calmodulin-dependent NADPH:oxygen oxidoreductase, catalysing the formation of hydrogen peroxide at suboptimal concentrations of L-arginine or H4biopterin, which inhibited the hydrogen peroxide formation with half-maximal effects at 11 microM and 0.3 microM respectively. Half-maximal rates of L-citrulline formation were observed at closely similar concentrations of these compounds, indicating that the NO synthase-catalysed oxygen activation was coupled to the synthesis of L-citrulline and NO in the presence of L-arginine and H4biopterin. N omega-Nitro-L-arginine, its methyl ester and N omega-monomethyl-L-arginine inhibited the synthesis of L-citrulline from L-arginine (100 microM) with half-maximal effects at 0.74 microM, 2.8 microM and 15 microM respectively. The N omega-nitro compounds also blocked the substrate-independent generation of hydrogen peroxide, whereas N omega-monomethyl-L-arginine did not affect this reaction. According to these results, activation of brain NO synthase by Ca2+ at subphysiological levels of intracellular L-arginine or H4biopterin may result in the formation of reactive oxygen species instead of NO, and N omega-nitro-substituted L-arginine analogues represent useful tools to effectively block NO synthase-catalysed oxygen activation.

    Topics: Amino Acid Oxidoreductases; Animals; Arginine; Binding, Competitive; Biopterins; Brain; Calcium; Calmodulin; Citrulline; Hydrogen Peroxide; NADP; Nitric Oxide Synthase; Nitroarginine; omega-N-Methylarginine; Swine

1992
Identification and characterization of a calmodulin-dependent nitric oxide synthase from GH3 pituitary cells.
    The Biochemical journal, 1992, Jul-01, Volume: 285 ( Pt 1)

    A nitric oxide synthase activity stimulated more than 30-fold by the concurrent presence of Ca2+ and calmodulin (CaM), and inhibited by trifluoperazine (50 microM), has been identified in extracts of GH3 pituitary cells. The CaM-dependent nitric oxide synthase of the crude extract was stimulated more than 9-fold by (6R)-5,6,7,8-tetrahydro-L-biopterin with half-maximal stimulation occurring at a concentration of 300 nM. Fractionation of the extract on DEAE-cellulose enhanced nitric oxide synthase specific activity up to 300-fold and provided a preparation which on Western blot analysis possessed a 152 kDa protein which cross-reacted with antibodies to homogeneous bovine brain nitric oxide synthase. The DEAE-cellulose-purified enzyme exhibited apparent Km values of 4.3 microM, 0.4 microM, 0.3 microM and 4 nM for L-arginine, NADPH, Ca2+ and CaM respectively. The CaM-dependent nitric oxide synthase of GH3 extract bound to 2',5'-ADP-agarose and was eluted by NADPH with a 500-fold increased specific activity. Citrulline formation by the ADP-agarose-purified enzyme was inhibited by NG-nitro-L-arginine, NG-methyl-L-arginine and Nitro Blue Tetrazolium with apparent Ki values of 0.2, 1.8 and 7 microM respectively. The ADP-agarose-purified enzyme displayed cytochrome c reductase activity which was stimulated more than 18-fold by the concurrent presence of Ca2+ and CaM and inhibited by trifluoperazine. NG-Nitro-L-arginine and NG-methyl-L-arginine did not inhibit the cytochrome c reductase activity.

    Topics: Amino Acid Oxidoreductases; Animals; Arginine; Autoradiography; Biopterins; Blotting, Western; Brain; Calmodulin; Cattle; Cells, Cultured; Chromatography, DEAE-Cellulose; Citrulline; Enzyme Activation; Kinetics; NADH Dehydrogenase; Nitric Oxide Synthase; Nitroarginine; Nitroblue Tetrazolium; omega-N-Methylarginine; Pituitary Gland

1992
Characterization of nitric oxide synthases in non-adrenergic non-cholinergic nerve containing tissue from the rat anococcygeus muscle.
    British journal of pharmacology, 1991, Volume: 104, Issue:2

    Tissue homogenates prepared from rat anococcygeus muscle converted L-arginine to L-citrulline indicating the presence of nitric oxide (NO) synthase. NO synthase activity was also found in crude and partially-purified soluble and particulate fractions prepared from the homogenates. Both soluble and particulate NO synthase were dependent on NADPH, 5,6,7,8-tetrahydrobiopterin and calcium, and inhibited by NG-nitro-L-arginine. Tissue homogenates or crude cytosolic and membrane fractions from rat vas deferens, which does not contain NO releasing non-adrenergic non-cholinergic neurones, had no NO synthase activity.

    Topics: Amino Acid Oxidoreductases; Animals; Arginine; Biopterins; Calcium; Citrulline; Endothelium, Vascular; In Vitro Techniques; Male; Muscles; Nitric Oxide Synthase; Nitroarginine; Rats; Rats, Inbred Strains; Vas Deferens

1991