nitroarginine has been researched along with pirinixic-acid* in 2 studies
2 other study(ies) available for nitroarginine and pirinixic-acid
Article | Year |
---|---|
PPAR-alpha activation protects the type 2 diabetic myocardium against ischemia-reperfusion injury: involvement of the PI3-Kinase/Akt and NO pathway.
Several clinical studies have shown the beneficial cardiovascular effects of fibrates in patients with diabetes and insulin resistance. The ligands of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) reduce ischemia-reperfusion injury in nondiabetic animals. We hypothesized that the activation of PPAR-alpha would exert cardioprotection in type 2 diabetic Goto-Kakizaki (GK) rats, involving mechanisms related to nitric oxide (NO) production via the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. GK rats and age-matched Wistar rats (n >or= 7) were given either 1) the PPAR-alpha agonist WY-14643 (WY), 2) dimethyl sulfoxide (DMSO), 3) WY and the NO synthase inhibitor N(G)-nitro-l-arginine (l-NNA), 4) l-NNA, 5) WY and the PI3K inhibitor wortmannin, or 6) wortmannin alone intravenously before a 35-min period of coronary artery occlusion followed by 2 h of reperfusion. Infarct size (IS), expression of endothelial NO synthase (eNOS), inducible NO synthase, and Akt as well as nitrite/nitrate were determined. The IS was 75 +/- 3% and 72 +/- 4% of the area at risk in the Wistar and GK DMSO groups, respectively. WY reduced IS to 56 +/- 3% in Wistar (P < 0.05) and to 46 +/- 5% in GK rats (P < 0.001). The addition of either l-NNA or wortmannin reversed the cardioprotective effect of WY in both Wistar (IS, 70 +/- 5% and 65 +/- 5%, respectively) and GK (IS, 66 +/- 4% and 64 +/- 4%, P < 0.05, respectively) rats. The expression of eNOS and eNOS Ser1177 in the ischemic myocardium from both strains was increased after WY. The expression of Akt, Akt Ser473, and Akt Thr308 was also increased in the ischemic myocardium from GK rats following WY. Myocardial nitrite/nitrate levels were reduced in GK rats (P < 0.05). The results suggest that PPAR-alpha activation protects the type 2 diabetic rat myocardium against ischemia-reperfusion injury via the activation of the PI3K/Akt and NO pathway. Topics: Androstadienes; Animals; Blood Glucose; Body Weight; Cardiotonic Agents; Diabetes Mellitus, Type 2; Disease Models, Animal; Enzyme Inhibitors; Hemodynamics; Insulin; Male; Myocardial Contraction; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Nitric Oxide; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Nitroarginine; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; PPAR alpha; Proto-Oncogene Proteins c-akt; Pyrimidines; Rats; Rats, Wistar; Signal Transduction; Wortmannin | 2009 |
Protection against myocardial ischaemia/reperfusion injury by PPAR-alpha activation is related to production of nitric oxide and endothelin-1.
Ligands of peroxisome proliferator-activated receptor alpha (PPAR-alpha) have been shown to reduce ischaemia/reperfusion injury. The mechanisms behind this effect are not well known. We hypothesized that activation of PPAR-alpha exerts cardioprotection via a mechanism related to nitric oxide (NO) and endothelin-1 (ET-1).. Five groups of anaesthetized open-chest Sprague-Dawley rats were given the PPAR-alpha agonist WY 14643 1 mg/kg (WY; n = 7), dimethyl sulfoxide (DMSO, vehicle for WY; n = 6), the combination of WY and the NO synthase inhibitor N-nitro-L-arginine (L-NNA, 2 mg/kg) (n = 7), L-NNA only (n = 8) or 0.9% sodium chloride (NaCl, vehicle for DMSO and L-NNA; n = 8) i.v. before a 30 min period of coronary artery occlusion followed by 2 h of reperfusion. Infarct size (IS), eNOS and iNOS protein and ET-1 mRNA expression were determined.. There were no haemodynamic differences between the groups during the experiment. The IS was 78 +/- 3% of the area at risk in the DMSO group and 77 +/- 2% in the NaCl group (P = NS). WY reduced IS to 56 +/- 3% (P < 0.001 vs. DMSO group). When WY was administered in combination with L-NNA the cardioprotective effect was abolished (IS 73 +/- 3%, P < 0.01 vs. WY 14643). L-NNA did not affect IS per se (78 +/- 2%, P = NS). The expression of eNOS but not iNOS protein in ischaemic myocardium from rats was increased in the group given WY (P < 0.05). ET-1 mRNA levels were lower in the ischaemic myocardium following WY administration.. The results suggest that the PPAR-alpha activation protects the rat myocardium against ischaemia/ reperfusion injury via a mechanism related to production of NO, and possibly ET-1. Topics: Animals; Blood Pressure; Endothelin-1; Enzyme Inhibitors; Heart Rate; Immunoblotting; Male; Myocardial Reperfusion Injury; Myocardium; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Nitroarginine; PPAR alpha; Pyrimidines; Rats; Rats, Sprague-Dawley; RNA, Messenger | 2006 |