nitroarginine has been researched along with paxilline* in 1 studies
1 other study(ies) available for nitroarginine and paxilline
Article | Year |
---|---|
Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells.
L-type, voltage-dependent calcium (Ca(2+)) channels, ryanodine-sensitive Ca(2+) release (RyR) channels, and large-conductance Ca(2+)-activated potassium (K(Ca)) channels comprise a functional unit that regulates smooth muscle contractility. Here, we investigated whether genetic ablation of caveolin-1 (cav-1), a caveolae protein, alters Ca(2+) spark to K(Ca) channel coupling and Ca(2+) spark regulation by voltage-dependent Ca(2+) channels in murine cerebral artery smooth muscle cells. Caveolae were abundant in the sarcolemma of control (cav-1(+/+)) cells but were not observed in cav-1-deficient (cav-1(-/-)) cells. Ca(2+) spark and transient K(Ca) current frequency were approximately twofold higher in cav-1(-/-) than in cav-1(+/+) cells. Although voltage-dependent Ca(2+) current density was similar in cav-1(+/+) and cav-1(-/-) cells, diltiazem and Cd(2+), voltage-dependent Ca(2+) channel blockers, reduced transient K(Ca) current frequency to approximately 55% of control in cav-1(+/+) cells but did not alter transient K(Ca) current frequency in cav-1(-/-) cells. Furthermore, although K(Ca) channel density was elevated in cav-1(-/-) cells, transient K(Ca) current amplitude was similar to that in cav-1(+/+) cells. Higher Ca(2+) spark frequency in cav-1(-/-) cells was not due to elevated intracellular Ca(2+) concentration, sarcoplasmic reticulum Ca(2+) load, or nitric oxide synthase activity. Similarly, Ca(2+) spark amplitude and spread, the percentage of Ca(2+) sparks that activated a transient K(Ca) current, the amplitude relationship between sparks and transient K(Ca) currents, and K(Ca) channel conductance and apparent Ca(2+) sensitivity were similar in cav-1(+/+) and cav-1(-/-) cells. In summary, cav-1 ablation elevates Ca(2+) spark and transient K(Ca) current frequency, attenuates the coupling relationship between voltage-dependent Ca(2+) channels and RyR channels that generate Ca(2+) sparks, and elevates K(Ca) channel density but does not alter transient K(Ca) current activation by Ca(2+) sparks. These findings indicate that cav-1 is required for physiological Ca(2+) spark and transient K(Ca) current regulation in cerebral artery smooth muscle cells. Topics: Animals; Barium; Cadmium; Calcium Signaling; Caveolin 1; Electrophysiology; Enzyme Inhibitors; Fluorescent Dyes; Fura-2; Indoles; Mice; Mice, Knockout; Microscopy, Confocal; Microscopy, Electron; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Nitroarginine; Patch-Clamp Techniques; Ryanodine Receptor Calcium Release Channel | 2006 |