nitroarginine has been researched along with 9-(tetrahydro-2-furyl)-adenine* in 3 studies
3 other study(ies) available for nitroarginine and 9-(tetrahydro-2-furyl)-adenine
Article | Year |
---|---|
Interstitial cells of Cajal in the urethra are cGMP-mediated targets of nitrergic neurotransmission.
While interstitial cells of Cajal (ICC) in the urethra respond to nitric oxide (NO) donors by increasing cGMP, it remains unclear whether urethral ICC are functionally innervated by nitrergic nerves. We have addressed this issue in the rat and sheep urethra, where cGMP production and relaxation were compared in preparations subjected to electrical field stimulation (EFS; 2 Hz, 4 min) of nitrergic nerves or to exogenous S-nitroso-L-cysteine (SNC; 0.1 mM, 4 min). Upon EFS, cGMP immunoreactivity (cGMP-ir) was observed in both smooth muscle cells (SMC) and in spindle-shaped cells that contained c-kit and vimentin, features of ICC. Similarly, cGMP-ir was preferentially, but inconsistently, found in ICC of the outer muscle layer on exposure to SNC. We found separate functional groups of ICC within the urethra. Thus only ICC present in the muscle layers (ICC-M) but not those in the serosa (ICC-SR) and lamina propia (ICC-LP) seem to be specifically influenced by activation of neuronal NO synthase (nNOS). Thus the increase in cGMP-ir in the ICC-M induced by EFS was prevented by Nomega-nitro-L-arginine and ODQ. Urethral ICC did not express nNOS, although they were closely associated with nitrergic nerves. cGMP-ir was also present in the urothelium (in the rat but not in the sheep) and the vascular endothelium but not in neural structures, such as the nerve trunks and nerve terminals. Together, these results suggest a model of parallel innervation in which both SMC and ICC-M are effectors of nerve-released NO in the urethra. Topics: Adenine; Adenylyl Cyclase Inhibitors; Adenylyl Cyclases; Animals; Cyclic GMP; Enteric Nervous System; Enzyme Inhibitors; Female; Fluorescent Antibody Technique; Guanylate Cyclase; Nitric Oxide; Nitric Oxide Synthase Type I; Nitroarginine; Oxadiazoles; Proto-Oncogene Proteins c-kit; Quinoxalines; Rats; Sheep; Synaptic Transmission; Ubiquitin Thiolesterase; Urethra; Vimentin | 2008 |
Investigation of the interaction between nitric oxide and vasoactive intestinal polypeptide in the guinea-pig gastric fundus.
The interaction between nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) was investigated in isolated circular smooth muscle cells and strips of the guinea-pig gastric fundus. VIP induced a concentration-dependent inhibition of carbachol-induced contraction in smooth muscle cells with a maximum at 10(-6) M. The relaxation by 10(-6) M VIP was inhibited for 79.1+/-5.8% (mean+/-s.e. mean) by the NO-synthase (NOS) inhibitor L-N(G)-nitroarginine (L-NOARG; 10(-4) M) in a L-arginine reversible way. Also the inducible NOS (iNOS) selective inhibitor N-(3-(acetaminomethyl)-benzyl)acetamide (1400 W; 10(-6) M) inhibited the VIP-induced relaxation, but its inhibitory effect was not reversed by L-arginine. When cells were incubated with the guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ, 10(-6) M), the protein kinase A-inhibitor (R)-p-cyclic adenosine-3', 5'-monophosphothioate ((R)-p-cAMPS, 10(-6) M) and the glucocorticoid dexamethasone (10(-5) M), the relaxant effect of VIP was decreased by respectively 80.9+/-7.6, 77.0+/-11.6 and 87.1+/-4.5%. In circular smooth muscle strips of the guinea-pig gastric fundus, the VIP (10(-9) - 10(-7) M)-induced relaxations were not significantly influenced by 10(-4) M L-NOARG, 10(-6) M 1400 W, 10(-6) M ODQ and 10(-5) M dexamethasone. These results suggest that iNOS, possibly induced by the procedure to prepare the smooth muscle cells, is involved in the relaxant effect of VIP in isolated smooth muscle cells but not in smooth muscle strips of the guinea-pig gastric fundus. This study illustrates the importance of the experimental method when studying the influence of NOS inhibitors on the relaxation induced by VIP in gastrointestinal smooth muscle preparations. Topics: Adenine; Adrenergic beta-Agonists; Animals; Atrial Natriuretic Factor; Carbachol; Colforsin; Cyclic AMP; Dexamethasone; Electric Stimulation; Enzyme Inhibitors; Gastric Fundus; Guinea Pigs; In Vitro Techniques; Isoproterenol; Molsidomine; Muscle Relaxation; Muscle, Smooth; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitroarginine; Nitroprusside; Pinacidil; Tetrodotoxin; Thionucleotides; Vasoactive Intestinal Peptide | 2000 |
Interplay between nitric oxide and vasoactive intestinal polypeptide in the pig gastric fundus smooth muscle.
The aim of this study was to investigate the exact mechanism of interaction between nitric oxide (NO) and vasoactive intestinal polypeptide (VIP) as inhibitory non-adrenergic non-cholinergic (NANC) neurotransmitters in isolated smooth muscle cells and smooth muscle strips of the pig gastric fundus. In isolated smooth muscle cells, the maximal relaxant effect of VIP (10(-9) M) was inhibited by 94% by the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine (L-NA, 10(-4) M) and by 85% by the inducible NOS (iNOS)-selective inhibitor N-(3-(aminomethyl)-benzyl)acetamide (1400W; 10(-6) M). The relaxant effect of VIP was reduced by more than 70% by the guanylyl cyclase inhibitor 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ; 10(-6) M), the glucocorticoid dexamethasone (10(-5) M) and three protein kinase A inhibitors: (R)-p-cyclic adenosine-3', 5'-monophosphothioate ((R)-p-cAMPS; 10(-6) M), ¿(8R,9S, 11S)-(-)-9-hydroxy-9-n-hexylester-8-methyl-2,3,9,10-tetrahydro-8, 11-epoxy-1H,8H,11H-2,7b,11a-triazadibenzo[a, g]cycloocta[cde]-trin-den-1-one¿ (KT5720; 10(-6) M) and N-(2-(p-bromo-cinnamylamino)ethyl))-5-isoquinoline sulfonamide dihydrochloride (H-89; 10(-5) M). In contrast, no influence of the NOS inhibitors, ODQ, dexamethasone, nor the protein kinase A inhibitors could be observed on the relaxant effect of VIP in smooth muscle strips. These data demonstrate that the experimental method completely changes the influence of NOS inhibitors on the relaxant effect of VIP in the pig gastric fundus. The isolation procedure of the smooth muscle cells might induce iNOS that can be activated by VIP. Topics: Adenine; Adenylyl Cyclase Inhibitors; Amidines; Animals; Arginine; Benzylamines; Carbazoles; Colforsin; Cyclic AMP; Dexamethasone; Dose-Response Relationship, Drug; Enzyme Inhibitors; Gastric Fundus; In Vitro Techniques; Indoles; Isoquinolines; Muscle Relaxation; Muscle, Smooth; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitroarginine; Oxadiazoles; Protein Kinase Inhibitors; Pyrroles; Quinoxalines; Sulfonamides; Swine; Thionucleotides; Vasoactive Intestinal Peptide | 2000 |