nitroarginine and 1-amino-1-3-dicarboxycyclopentane

nitroarginine has been researched along with 1-amino-1-3-dicarboxycyclopentane* in 3 studies

Other Studies

3 other study(ies) available for nitroarginine and 1-amino-1-3-dicarboxycyclopentane

ArticleYear
Characterization of metabotropic glutamate receptor-mediated nitric oxide production in vivo.
    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 1997, Volume: 17, Issue:2

    We tested the hypothesis that stimulation of metabotropic glutamate receptors (mGluRs) increases nitric oxide (NO) production in the hippocampus in vivo. Microdialysis probes were placed bilaterally into the CA3 region of the hippocampus of adult Sprague-Dawley rats under pentobarbital anesthesia. Probes were perfused for 5 h with artificial cerebrospinal fluid (CSF) containing 3 microM [14C]-L-arginine. Recovery of [14C]-L-citrulline in the effluent was used as a marker of NO production. In nine groups of rats, increases in [14C]-L-citrulline recovery were compared between right- and left-sided probes perfused with various combinations of the selective mGluR agonist, trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD); the mGluR antagonist, (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG); the NO synthase inhibitor, N-nitro-L-arginine (LNNA); the ryanodine sensitive calcium-release channel inhibitor dantrolene, the non-N-methyl-D-aspartate (NMDA); receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX); the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine (MK-801); and the Na+ channel blocker, tetrodotoxin. Recovery of [14C]-L-citrulline during perfusion with artificial CSF progressively increased to 90 +/- 21 fmol/min (+/-SD) over 5 h. Perfusion in the contralateral hippocampus with 1 mM ACPD augmented [14C]-L-citrulline recovery to 250 +/- 81 fmol/min. Perfusion of 1 mM nitroarginine + ACPD inhibited [14C]-L-citrulline recovery compared to that with ACPD alone. Perfusion with 1 mM MCPG + ACPD attenuated ACPD enhanced [14C]-L-citrulline recovery. Perfusion of 1 mM dantrolene + ACPD inhibited the ACPD-evoked increase in [14C]-L-citrulline recovery. Perfusion of 1 mM MCPG or dantrolene without ACPD did not decrease [14C]-L-citrulline recovery as compared to CSF alone. ACPD-enhanced [14C]-L-citrulline recovery was not attenuated by CNQX, MK-801, or tetrodotoxin (TTX). Using an indirect method of assessing NO production in vivo, these data demonstrate that mGluR stimulation enhances NO production in rat hippocampus. Inhibition with dantrolene suggests that calcium-induced calcium release amplifies the inositol triphosphate-mediated calcium signal associated with mGluR stimulation, thereby resulting in augmented calcium-dependent NO production.

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Benzoates; Biomarkers; Calcium Channels; Citrulline; Cycloleucine; Dantrolene; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glycine; Hippocampus; Male; Microdialysis; Muscle Proteins; N-Methylaspartate; Nerve Tissue Proteins; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Ryanodine Receptor Calcium Release Channel; Tetrodotoxin

1997
Changes in extracellular nitrite and nitrate levels after inhibition of glial metabolism with fluorocitrate.
    Brain research, 1997, Jul-11, Volume: 762, Issue:1-2

    The role of glial cells in nitric oxide production in the cerebellum of conscious rats was investigated with a glial selective metabolic inhibitor, fluorocitrate. The levels of nitric oxide metabolites (nitrite plus nitrate) in the dialysate following in vivo microdialysis progressively increased to more than 2-fold the basal levels during a 2-h infusion of fluorocitrate (1 mM), and the increase persisted for more than 2 h after the treatment. Pretreatment with N(G)-nitro-L-arginine methyl ester attenuated the fluorocitrate-induced increase in nitric oxide metabolite levels. None of the glutamate receptor antagonists, including D(-)-2-amino-5-phosphonopentanoic acid, 6,7-dinitroquinoxaline-2,3-dione, and (+/-)-alpha-methyl-4-carboxyphenylglycine, inhibited the fluorocitrate-induced increase. The L-arginine-induced increase was significantly reduced by fluorocitrate treatment, while N-methyl-D-aspartate, (+)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and trans-(+/-)-1-amino-(1S,3R)-cyclopentane-dicarboxylic acid increased nitric oxide metabolites levels in the fluorocitrate-treated rats, as much as in control animals. These results suggest that glial cells play an important role in modulating nitric oxide production in the cerebellum by regulating L-arginine availability.

    Topics: Aconitate Hydratase; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Behavior, Animal; Benzoates; Cerebellum; Citrates; Citric Acid Cycle; Cycloleucine; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Extracellular Space; Glycine; Male; N-Methylaspartate; Neuroglia; Neuroprotective Agents; NG-Nitroarginine Methyl Ester; Nitrates; Nitric Oxide; Nitrites; Nitroarginine; Quinoxalines; Rats; Rats, Wistar; Substrate Specificity

1997
The influence of nitric oxide on perigeniculate GABAergic cell activity in the anaesthetized cat.
    The European journal of neuroscience, 1996, Volume: 8, Issue:12

    We have tested the effect of iontophoretic application of the nitric oxide synthase inhibitor L-nitroarginine on the activity of a population of 53 perigeniculate (PGN) cells, recorded extracellularly in the anaesthetized paralysed cat. In all cells tested with visual stimulation during L-nitroarginine application (n = 15), the visually elicited responses were markedly reduced, on average by 63 +/- 15%, and there was a reduction in spontaneous activity too. This effect was blocked by co-application of the substrate for nitric oxide synthase, L-arginine, but not by the inactive D-isoform, although application of L-arginine alone was without effect. Pressure application of the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) elevated both visual responses and spontaneous discharge, an effect also seen with a second nitric oxide donor, sodium nitroprusside (n = 12). The nitric oxide synthase inhibitor L-nitroarginine was applied to a sub-population of seven cells and it selectively decreased NMDA mediated excitation (reduction 80 +/- 14%) with little or no effect on the excitation mediated by alpha-amino-3-hydroxy-5-5-methyl-4-isoxazole-propionic acid (AMPA) or quisqualate (effects not statistically significant), and it had no effect (n = 7) on excitation mediated by the metabotropic agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD). Furthermore, application of SNAP also increased the magnitude of excitatory responses mediated by NMDA receptors. On a different population of seven cells, application of the new NO donor diethylamine-nitric oxide (DEA-NO) enhanced the actions of NMDA without an effect on responses to AMPA. These effects are qualitatively and quantitatively similar to those we have previously described for X and Y type cells in the dorsal lateral geniculate nucleus (dLGN), despite the known opposite effects of acetylcholine (ACh) application in the dLGN and PGN (ACh is co-localized with nitric oxide synthase at both sites). We propose that within the PGN nitric oxide acts to enhance transmission utilizing NMDA receptors selectively (thereby interacting with the globally inhibiting effect of ACh at this site) to enhance visual responses, reducing or removing the non-specific inhibitory drive from PGN to dLGN seen in the spindling activity of slow-wave sleep. These effects will act in concert with the facilitatory actions of both ACh and nitric oxide within the dLGN proper, and will thereby enhance the faithful transmission

    Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cats; Cycloleucine; Enzyme Inhibitors; gamma-Aminobutyric Acid; Geniculate Bodies; N-Methylaspartate; Nitric Oxide; Nitric Oxide Synthase; Nitroarginine; Nitroprusside; Penicillamine; Photic Stimulation; Quisqualic Acid; S-Nitroso-N-Acetylpenicillamine

1996