nitrendipine and scopolamine hydrobromide

nitrendipine has been researched along with scopolamine hydrobromide in 10 studies

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19901 (10.00)18.7374
1990's2 (20.00)18.2507
2000's4 (40.00)29.6817
2010's3 (30.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL1
Creveling, CR; Daly, JW; Lewandowski, GA; McNeal, ET1
Topliss, JG; Yoshida, F1
Bruno-Blanch, L; Gálvez, J; García-Domenech, R1
Lombardo, F; Obach, RS; Waters, NJ1
Du-Cuny, L; Mash, EA; Meuillet, EJ; Moses, S; Powis, G; Song, Z; Zhang, S1
Campillo, NE; Guerra, A; Páez, JA1
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K1
Mehta, AK; Ticku, MK1
Koizumi, S; Moriyama, Y; Ogura, A; Yamada, H; Yamaguchi, A1

Other Studies

10 other study(ies) available for nitrendipine and scopolamine hydrobromide

ArticleYear
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
    PloS one, 2016, Volume: 11, Issue:10

    Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat

2016
[3H]Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs.
    Journal of medicinal chemistry, 1985, Volume: 28, Issue:3

    Topics: Adrenergic alpha-Antagonists; Adrenergic beta-Antagonists; Anesthetics, Local; Animals; Batrachotoxins; Calcium Channel Blockers; Cyclic AMP; Guinea Pigs; Histamine H1 Antagonists; In Vitro Techniques; Ion Channels; Neurotoxins; Sodium; Tranquilizing Agents; Tritium

1985
QSAR model for drug human oral bioavailability.
    Journal of medicinal chemistry, 2000, Jun-29, Volume: 43, Issue:13

    Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship

2000
Topological virtual screening: a way to find new anticonvulsant drugs from chemical diversity.
    Bioorganic & medicinal chemistry letters, 2003, Aug-18, Volume: 13, Issue:16

    Topics: Anticonvulsants; Computer Simulation; Databases, Factual; Discriminant Analysis; Drug Design; Molecular Structure; Quantitative Structure-Activity Relationship

2003
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain.
    Bioorganic & medicinal chemistry, 2009, Oct-01, Volume: 17, Issue:19

    Topics: Antineoplastic Agents; Blood Proteins; Caco-2 Cells; Cell Membrane Permeability; Computer Simulation; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Phosphoproteins; Protein Binding; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-akt; Quantitative Structure-Activity Relationship

2009
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
    European journal of medicinal chemistry, 2010, Volume: 45, Issue:3

    Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical

2010
QSAR-based permeability model for drug-like compounds.
    Bioorganic & medicinal chemistry, 2011, Apr-15, Volume: 19, Issue:8

    Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship

2011
Role of N-methyl-D-aspartate (NMDA) receptors in experimental catalepsy in rats.
    Life sciences, 1990, Volume: 46, Issue:1

    Topics: Animals; Aspartic Acid; Baclofen; Bromocriptine; Catalepsy; Dibenzocycloheptenes; Dizocilpine Maleate; Drug Interactions; Haloperidol; Male; N-Methylaspartate; Nimodipine; Nitrendipine; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Scopolamine

1990
Acetylcholine triggers L-glutamate exocytosis via nicotinic receptors and inhibits melatonin synthesis in rat pinealocytes.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1998, Jul-01, Volume: 18, Issue:13

    Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Acetylcholine; Animals; Arylamine N-Acetyltransferase; Atropine; Bungarotoxins; Calcium; Calcium Channel Agonists; Calcium Channel Blockers; Calcium Channels; Calcium Channels, L-Type; Carbachol; Cells, Cultured; Diltiazem; Exocytosis; Glutamic Acid; Melatonin; Muscarine; Muscarinic Agonists; Muscarinic Antagonists; Nicotine; Nicotinic Agonists; Nicotinic Antagonists; Nifedipine; Nitrendipine; Oxotremorine; Parasympathetic Nervous System; Pineal Gland; Rats; Rats, Wistar; Receptors, Nicotinic; Scopolamine; Synaptic Vesicles; Tubocurarine

1998