nitrendipine has been researched along with phencyclidine in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 4 (44.44) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (44.44) | 29.6817 |
2010's | 1 (11.11) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bruno-Blanch, L; Gálvez, J; García-Domenech, R | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV | 1 |
Du-Cuny, L; Mash, EA; Meuillet, EJ; Moses, S; Powis, G; Song, Z; Zhang, S | 1 |
Annand, R; Gozalbes, R; Jacewicz, M; Pineda-Lucena, A; Tsaioun, K | 1 |
Bolger, GT; Rafferty, MF; Skolnick, P | 2 |
Bolger, GT; Rafferty, MF; Rice, KC; Skolnick, P; Weissman, BA | 1 |
Pert, CB; Quirion, R | 1 |
9 other study(ies) available for nitrendipine and phencyclidine
Article | Year |
---|---|
Topological virtual screening: a way to find new anticonvulsant drugs from chemical diversity.
Topics: Anticonvulsants; Computer Simulation; Databases, Factual; Discriminant Analysis; Drug Design; Molecular Structure; Quantitative Structure-Activity Relationship | 2003 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Physicochemical determinants of human renal clearance.
Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight | 2009 |
Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain.
Topics: Antineoplastic Agents; Blood Proteins; Caco-2 Cells; Cell Membrane Permeability; Computer Simulation; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Phosphoproteins; Protein Binding; Protein Kinase Inhibitors; Protein Structure, Tertiary; Proto-Oncogene Proteins c-akt; Quantitative Structure-Activity Relationship | 2009 |
QSAR-based permeability model for drug-like compounds.
Topics: Caco-2 Cells; Cell Membrane Permeability; Drug Discovery; Humans; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2011 |
Phencyclidine increases the affinity of dihydropyridine calcium channel antagonist binding in rat brain.
Topics: Animals; Binding Sites; Brain; Calcium; Calcium Channel Blockers; Dihydropyridines; In Vitro Techniques; Kinetics; Magnesium; Male; Nifedipine; Nitrendipine; Phencyclidine; Pyridines; Rats; Rats, Inbred Strains | 1985 |
Enhancement of brain calcium antagonist binding by phencyclidine and related compounds.
Topics: Anesthetics, Local; Animals; Binding Sites; Brain; Calcium Channel Blockers; Diltiazem; In Vitro Techniques; Male; Narcotics; Neurotoxins; Nifedipine; Nitrendipine; Phencyclidine; Rats; Rats, Inbred Strains | 1986 |
Acylating phencyclidines irreversibly enhance brain calcium antagonist binding.
Topics: Animals; Brain; Male; Membranes; Mice; Mice, Inbred ICR; Nifedipine; Nitrendipine; Phencyclidine; Stimulation, Chemical | 1986 |
Certain calcium antagonists are potent displacers of [3H]phencyclidine (PCP) binding in rat brain.
Topics: Animals; Binding, Competitive; Brain; Calcium Channel Blockers; Gallopamil; In Vitro Techniques; Nifedipine; Nitrendipine; Olfactory Bulb; Phencyclidine; Rats; Verapamil | 1982 |