nifurtimox has been researched along with trypanothione* in 4 studies
4 other study(ies) available for nifurtimox and trypanothione
Article | Year |
---|---|
New trypanocidal hybrid compounds from the association of hydrazone moieties and benzofuroxan heterocycle.
Hybrid compounds containing hydrazones and benzofuroxan pharmacophores were designed as potential Trypanosoma cruzi-enzyme inhibitors. The majority of the designed compounds was successfully synthesized and biologically evaluated displaying remarkable in vitro activity against different strains of T. cruzi. Unspecific cytotoxicity was evaluated using mouse macrophages, displaying isothiosemicarbazone 10 and thiosemicarbazone 12 selectivity indexes (macrophage/parasite) of 21 and 27, respectively. In addition, the mode of anti-trypanosomal action of the derivatives was investigated. Some of these derivatives were moderate inhibitors of cysteinyl active site enzymes of T. cruzi, cruzipain and trypanothione reductase. ESR experiments using T. cruzi microsomal fraction suggest that the main mechanism of action of the trypanocidal effects is the production of oxidative stress into the parasite. Topics: Animals; Benzoxazoles; Cysteine Endopeptidases; Glutathione; Hydrazones; Macrophages; Mice; Oxidative Stress; Protozoan Proteins; Spermidine; Trypanocidal Agents; Trypanosoma cruzi | 2008 |
Effects of buthionine sulfoximine nifurtimox and benznidazole upon trypanothione and metallothionein proteins in Trypanosoma cruzi.
Proteins rich in sulfhydryl groups, such as metallothionein, are present in several strains of the parasite Trypanosoma cruzi, the etiological agent of Chagas' disease. Metallothionein-like protein concentrations ranged from 5.1 to 13.2 pmol/mg protein depending on the parasite strain and growth phase. Nifurtimox and benznidazole, used in the treatment of Chagas' disease, decreased metallothionein activity by approximately 70%. T. cruzi metallothionein was induced by ZnCl2. Metallothionein from T. cruzi was partially purified and its monobromobimane derivative showed a molecular weight of approximately 10,000 Da by SDS-PAGE analysis. The concentration of trypanothione, the major glutathione conjugate in T. cruzi, ranged from 3.8 to 10.8 nmol/mg protein, depending on the culture phase. The addition of buthionine sulfoximine to the protozoal culture considerably reduced the concentration of trypanothione and had no effect upon the metallothionein concentration. The possible contribution of metallothionein-like proteins to drug resistance in T. cruzi is discussed. Topics: Animals; Buthionine Sulfoximine; Electrophoresis, Polyacrylamide Gel; Glutathione; Metallothionein; Nifurtimox; Nitroimidazoles; Protozoan Proteins; Spermidine; Time Factors; Trypanocidal Agents; Trypanosoma cruzi | 2004 |
Effects of nifurtimox and benznidazole upon glutathione and trypanothione content in epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi.
Topics: Animals; Glutathione; Nifurtimox; Nitroimidazoles; Spermidine; Sulfhydryl Compounds; Trypanocidal Agents; Trypanosoma cruzi | 1997 |
Glutathione and trypanothione in several strains of Trypanosoma cruzi: effect of drugs.
Glutathione (GSH), trypanothione (T(SH)2) and glutathionyl spermidine (GSH-SP) concentrations were determined in the Tulahuén and LQ strains and the DM 28c clone of Trypanosoma cruzi. The concentrations of GSH, T(SH)2 and GSH-SP, expressed as nmol of GSH per g of parasite fresh weight, were 60.1, 397.8 and 103.9, respectively, for the Tulahuén strain. For the DM 28c clone, the values were 113.9, 677.9 and 164.1, respectively, and for the LQ strain they were 199.1, 1100.5 and 55.3, respectively. When the parasites were treated with 10 microM nifurtimox or 50 microM benznidazole for 2 h, the concentrations of all three reduced thiols decreased strongly. The total amount of T(SH)2 decreased by more than 50%. Treatment of the parasites with 5 mM buthionine sulfoximine, an inhibitor of GSH synthesis, for 6 h diminished the concentrations of the reduced thiols by between 27% and 53% with respect to the controls. Cyclohexylamine, an inhibitor of spermidine synthesis, decreased the concentrations of T(SH)2 and GSH-SP but not that of GSH. It is possible to conclude from this study that trypanothione is the most important thiol involved in the detoxication of nifurtimox and benznidazole in T. cruzi and that electrophilic reduced metabolites of both drugs are most probably conjugated with GSH, T(SH)2 and GSH-SP, thus decreasing their concentrations. GSH biosynthesis is an important drug target. Topics: Animals; Antimetabolites; Buthionine Sulfoximine; Cycloheximide; Glutathione; Nifurtimox; Nitroimidazoles; Species Specificity; Spermidine; Trypanocidal Agents; Trypanosoma cruzi | 1996 |