nifedipine and troglitazone

nifedipine has been researched along with troglitazone in 18 studies

Research

Studies (18)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (16.67)18.2507
2000's2 (11.11)29.6817
2010's13 (72.22)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
He, Z; Li, H; Liu, J; Liu, X; Sui, X; Sun, J; Sun, Y; Yan, Z1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Chen, M; Fang, H; Liu, Z; Shi, Q; Tong, W; Vijay, V1
Barber, J; Dawson, S; Kenna, JG; Paul, N; Stahl, S1
Fijorek, K; Glinka, A; Mendyk, A; Polak, S; Wiśniowska, B1
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Bakmiwewa, SM; Ball, HJ; Fatokun, AA; Hunt, NH; Payne, RJ; Tran, A1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Aleo, MD; Bonin, PD; Luo, Y; Potter, DM; Swiss, R; Will, Y1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Mori, M; Ohtani, KI; Sato, N; Shimizu, H1
Hisatome, I; Ikeda, T; Ogino, K; Shimoyama, M; Tanaka, Y1
Asano, M; Hazama, H; Imuta, H; Iwasawa, K; Kawakami, Y; Morita, T; Nakajima, T; Nakamura, F; Okuda, Y; Omata, M; Oonuma, H; Suzuki, J; Suzuki, S1
Marks, B; Raucy, J; Trubetskoy, O; Yueh, MF; Zielinski, T1
Chen, C; Gao, Y; Liu, D; Wang, H; Zhu, J1

Reviews

1 review(s) available for nifedipine and troglitazone

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

17 other study(ies) available for nifedipine and troglitazone

ArticleYear
First-principle, structure-based prediction of hepatic metabolic clearance values in human.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:4

    Topics: Computational Biology; Drug Discovery; Hepatocytes; Humans; Hydrogen-Ion Concentration; Liver; Metabolic Clearance Rate; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship; Sensitivity and Specificity; Software

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
FDA-approved drug labeling for the study of drug-induced liver injury.
    Drug discovery today, 2011, Volume: 16, Issue:15-16

    Topics: Animals; Benchmarking; Biomarkers, Pharmacological; Chemical and Drug Induced Liver Injury; Drug Design; Drug Labeling; Drug-Related Side Effects and Adverse Reactions; Humans; Pharmaceutical Preparations; Reproducibility of Results; United States; United States Food and Drug Administration

2011
In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Cholestasis; Drug-Related Side Effects and Adverse Reactions; Humans; Insecta; Rats; Risk Factors

2012
Predictive model for L-type channel inhibition: multichannel block in QT prolongation risk assessment.
    Journal of applied toxicology : JAT, 2012, Volume: 32, Issue:10

    Topics: Artificial Intelligence; Calcium Channel Blockers; Calcium Channels, L-Type; Cell Line; Computational Biology; Computer Simulation; Drugs, Investigational; Ether-A-Go-Go Potassium Channels; Expert Systems; Heart Rate; Humans; Models, Biological; Myocytes, Cardiac; NAV1.5 Voltage-Gated Sodium Channel; Potassium Channel Blockers; Quantitative Structure-Activity Relationship; Risk Assessment; Shaker Superfamily of Potassium Channels; Torsades de Pointes; Voltage-Gated Sodium Channel Blockers

2012
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
    Chemical research in toxicology, 2012, Oct-15, Volume: 25, Issue:10

    Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding

2012
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
Identification of selective inhibitors of indoleamine 2,3-dioxygenase 2.
    Bioorganic & medicinal chemistry letters, 2012, Dec-15, Volume: 22, Issue:24

    Topics: Animals; Dose-Response Relationship, Drug; Enzyme Inhibitors; HEK293 Cells; Humans; Indoleamine-Pyrrole 2,3,-Dioxygenase; Mice; Models, Molecular; Molecular Structure; Structure-Activity Relationship; Substrate Specificity

2012
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Human drug-induced liver injury severity is highly associated with dual inhibition of liver mitochondrial function and bile salt export pump.
    Hepatology (Baltimore, Md.), 2014, Volume: 60, Issue:3

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Chemical and Drug Induced Liver Injury; Humans; Male; Mitochondria, Liver; Rats; Rats, Sprague-Dawley; Severity of Illness Index

2014
Troglitazone (CS-045) inhibits beta-cell proliferation rate following stimulation of insulin secretion in HIT-T 15 cells.
    Endocrinology, 1998, Volume: 139, Issue:1

    Topics: Animals; Calcium; Cell Division; Cells, Cultured; Chromans; Cricetinae; Hypoglycemic Agents; Insulin; Insulin Secretion; Islets of Langerhans; Mesocricetus; Nifedipine; Thiazoles; Thiazolidinediones; Troglitazone

1998
Hemodynamic basis for the acute cardiac effects of troglitazone in isolated perfused rat hearts.
    Diabetes, 1999, Volume: 48, Issue:3

    Topics: Animals; Blood Pressure; Calcium Channels; Chromans; Coronary Circulation; Heart Rate; Hemodynamics; Humans; Hypoglycemic Agents; In Vitro Techniques; Male; Nifedipine; Nitroprusside; Prazosin; Propranolol; Rats; Rats, Wistar; Receptors, Adrenergic, alpha; Receptors, Adrenergic, beta; Thiazoles; Thiazolidinediones; Troglitazone; Ventricular Function, Left

1999
Troglitazone inhibits voltage-dependent calcium currents in guinea pig cardiac myocytes.
    Circulation, 1999, Jun-08, Volume: 99, Issue:22

    Topics: Animals; Calcium Channel Blockers; Calcium Channels; Calcium Channels, L-Type; Calcium Channels, T-Type; Cardiotonic Agents; Chromans; Cyclic AMP; Electric Conductivity; Guinea Pigs; Hypoglycemic Agents; Isoproterenol; Kinetics; Myocardium; Nifedipine; Thiazoles; Thiazolidinediones; Troglitazone; Verapamil

1999
A simultaneous assessment of CYP3A4 metabolism and induction in the DPX-2 cell line.
    The AAPS journal, 2005, Mar-04, Volume: 7, Issue:1

    Topics: Carcinoma, Hepatocellular; Cell Line, Tumor; Chromans; Clotrimazole; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Dexamethasone; Dimethyl Sulfoxide; Enhancer Elements, Genetic; Enzyme Induction; Genes, Reporter; Genes, Synthetic; Humans; Ketoconazole; Liver Neoplasms; Lovastatin; Luciferases; Mifepristone; Neoplasm Proteins; Nifedipine; Omeprazole; Paclitaxel; Phenytoin; Pregnane X Receptor; Receptors, Cytoplasmic and Nuclear; Receptors, Steroid; Recombinant Fusion Proteins; Rifampin; Thiazolidinediones; Transcription, Genetic; Troglitazone; Troleandomycin

2005
Functional characterization of five CYP2C8 variants and prediction of CYP2C8 genotype-dependent effects on in vitro and in vivo drug-drug interactions.
    Xenobiotica; the fate of foreign compounds in biological systems, 2010, Volume: 40, Issue:7

    Topics: Aryl Hydrocarbon Hydroxylases; Chromans; Chromatography, High Pressure Liquid; Cytochrome P-450 CYP2C8; DNA Primers; Drug Discovery; Drug Interactions; Genetic Vectors; Humans; Isoenzymes; Kinetics; Microsomes; Nifedipine; Paclitaxel; Polymorphism, Single Nucleotide; Raloxifene Hydrochloride; Regression Analysis; Saccharomyces cerevisiae; Thiazolidinediones; Troglitazone

2010