nifedipine and daidzein

nifedipine has been researched along with daidzein in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (16.67)18.2507
2000's3 (50.00)29.6817
2010's2 (33.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Fijorek, K; Glinka, A; Mendyk, A; Polak, S; Wiśniowska, B1
Fukuda, K; Kato, S; Mima, H; Mori, K; Morikawa, H; Shoda, T1
Roberts, RE1
Costuleanu, A; Costuleanu, M; Costuleanu, N; Foia, L; Petrescu, G; Slatineanu, SM1

Other Studies

6 other study(ies) available for nifedipine and daidzein

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
Predictive model for L-type channel inhibition: multichannel block in QT prolongation risk assessment.
    Journal of applied toxicology : JAT, 2012, Volume: 32, Issue:10

    Topics: Artificial Intelligence; Calcium Channel Blockers; Calcium Channels, L-Type; Cell Line; Computational Biology; Computer Simulation; Drugs, Investigational; Ether-A-Go-Go Potassium Channels; Expert Systems; Heart Rate; Humans; Models, Biological; Myocytes, Cardiac; NAV1.5 Voltage-Gated Sodium Channel; Potassium Channel Blockers; Quantitative Structure-Activity Relationship; Risk Assessment; Shaker Superfamily of Potassium Channels; Torsades de Pointes; Voltage-Gated Sodium Channel Blockers

2012
Tyrosine kinase inhibitors suppress N-type and T-type Ca2+ channel currents in NG108-15 cells.
    Pflugers Archiv : European journal of physiology, 1998, Volume: 436, Issue:1

    Topics: Animals; Benzoquinones; Calcium Channel Blockers; Calcium Channels; Electric Conductivity; Enzyme Inhibitors; Genistein; Glioma; GTP-Binding Proteins; Hybrid Cells; Isoflavones; Kinetics; Lactams, Macrocyclic; Neuroblastoma; Nifedipine; omega-Conotoxin GVIA; Peptides; Phenols; Protein-Tyrosine Kinases; Quinones; Rats; Rifabutin; Tumor Cells, Cultured

1998
Role of the extracellular signal-regulated kinase (Erk) signal transduction cascade in alpha(2) adrenoceptor-mediated vasoconstriction in porcine palmar lateral vein.
    British journal of pharmacology, 2001, Volume: 133, Issue:6

    Topics: Adrenergic alpha-2 Receptor Agonists; Adrenergic alpha-Agonists; Animals; Brimonidine Tartrate; Butadienes; Calcium-Calmodulin-Dependent Protein Kinases; Dose-Response Relationship, Drug; Enzyme Inhibitors; Flavonoids; Forelimb; Genistein; Isoflavones; Mitogen-Activated Protein Kinases; Nifedipine; Nitriles; Potassium Chloride; Quinoxalines; Receptors, Adrenergic, alpha-2; Signal Transduction; Swine; Vasoconstriction; Vasodilator Agents; Veins; Verapamil

2001
Contractile effects of angiotensin peptides in rat aorta are differentially dependent on tyrosine kinase activity.
    Journal of the renin-angiotensin-aldosterone system : JRAAS, 2001, Volume: 2, Issue:3

    Topics: Angiotensin Receptor Antagonists; Angiotensins; Animals; Aorta; Calcium Channel Blockers; Electrophysiology; Enzyme Inhibitors; Genistein; In Vitro Techniques; Isoflavones; Male; Nifedipine; Peptide Fragments; Potassium; Protein-Tyrosine Kinases; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Saralasin; Vasoconstrictor Agents

2001