nicotianamine and 2--deoxymugineic-acid

nicotianamine has been researched along with 2--deoxymugineic-acid* in 15 studies

Reviews

1 review(s) available for nicotianamine and 2--deoxymugineic-acid

ArticleYear
Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification.
    International journal of molecular sciences, 2015, Aug-13, Volume: 16, Issue:8

    Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2'-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation.

    Topics: Azetidinecarboxylic Acid; Biological Transport; Cadmium; Edible Grain; Iron; Oryza; Phloem; Plant Roots; Xylem; Zinc

2015

Other Studies

14 other study(ies) available for nicotianamine and 2--deoxymugineic-acid

ArticleYear
Genome-wide analysis of the NAAT, DMAS, TOM, and ENA gene families in maize suggests their roles in mediating iron homeostasis.
    BMC plant biology, 2022, Jan-17, Volume: 22, Issue:1

    Nicotianamine (NA), 2'-deoxymugineic acid (DMA), and mugineic acid (MA) are chelators required for iron uptake and transport in plants. Nicotianamine aminotransferase (NAAT), 2'-deoxymugineic acid synthase (DMAS), transporter of MAs (TOM), and efflux transporter of NA (ENA) are involved in iron uptake and transport in rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare); however, these families have not been fully identified and comprehensively analyzed in maize (Zea mays L.).. Here, we identified 5 ZmNAAT, 9 ZmDMAS, 11 ZmTOM, and 2 ZmENA genes by genome mining. RNA-sequencing and quantitative real-time PCR analysis revealed that these genes are expressed in various tissues and respond differently to high and low iron conditions. In particular, iron deficiency stimulated the expression of ZmDMAS1, ZmTOM1, ZmTOM3, and ZmENA1. Furthermore, we determined protein subcellular localization by transient expression of green fluorescent protein fusions in maize mesophyll protoplasts. ZmNAAT1, ZmNAAT-L4, ZmDMAS1, and ZmDMAS-L1 localized in the cytoplasm, whereas ZmTOMs and ZmENAs targeted to plasma and tonoplast membranes, endomembranes, and vesicles.. Our results suggest that the different gene expression profiles and subcellular localizations of ZmNAAT, ZmDMAS, ZmTOM, and ZmENA family members may enable specific regulation of phytosiderophore metabolism in different tissues and under different external conditions, shedding light on iron homeostasis in maize and providing candidate genes for breeding iron-rich maize varieties.

    Topics: Azetidinecarboxylic Acid; Biological Transport; Chromosomes, Plant; Gene Expression Regulation, Plant; Genes, Reporter; Genome, Plant; Homeostasis; Iron; Iron Deficiencies; Multigene Family; Phylogeny; Plant Proteins; Protein Transport; Recombinant Fusion Proteins; Siderophores; Transaminases; Zea mays

2022
Nicotianamine-chelated iron positively affects iron status, intestinal morphology and microbial populations in vivo (Gallus gallus).
    Scientific reports, 2020, 02-10, Volume: 10, Issue:1

    Wheat flour iron (Fe) fortification is mandatory in 75 countries worldwide yet many Fe fortificants, such as Fe-ethylenediaminetetraacetate (EDTA), result in unwanted sensory properties and/or gastrointestinal dysfunction and dysbiosis. Nicotianamine (NA) is a natural chelator of Fe, zinc (Zn) and other metals in higher plants and NA-chelated Fe is highly bioavailable in vitro. In graminaceous plants NA serves as the biosynthetic precursor to 2' -deoxymugineic acid (DMA), a related Fe chelator and enhancer of Fe bioavailability, and increased NA/DMA biosynthesis has proved an effective Fe biofortification strategy in several cereal crops. Here we utilized the chicken (Gallus gallus) model to investigate impacts of NA-chelated Fe on Fe status and gastrointestinal health when delivered to chickens through intraamniotic administration (short-term exposure) or over a period of six weeks as part of a biofortified wheat diet containing increased NA, Fe, Zn and DMA (long-term exposure). Striking similarities in host Fe status, intestinal functionality and gut microbiome were observed between the short-term and long-term treatments, suggesting that the effects were largely if not entirely due to consumption of NA-chelated Fe. These results provide strong support for wheat with increased NA-chelated Fe as an effective biofortification strategy and uncover novel impacts of NA-chelated Fe on gastrointestinal health and functionality.

    Topics: Animal Feed; Animals; Azetidinecarboxylic Acid; Biofortification; Biological Availability; Chick Embryo; Chickens; Edetic Acid; Flour; Food, Fortified; Gastrointestinal Microbiome; Intestinal Mucosa; Iron; Iron Chelating Agents; Models, Animal; Triticum

2020
Metabolic engineering of bread wheat improves grain iron concentration and bioavailability.
    Plant biotechnology journal, 2019, Volume: 17, Issue:8

    Bread wheat (Triticum aestivum L.) is cultivated on more land than any other crop and produces a fifth of the calories consumed by humans. Wheat endosperm is rich in starch yet contains low concentrations of dietary iron (Fe) and zinc (Zn). Biofortification is a micronutrient intervention aimed at increasing the density and bioavailability of essential vitamins and minerals in staple crops; Fe biofortification of wheat has proved challenging. In this study we employed constitutive expression (CE) of the rice (Oryza sativa L.) nicotianamine synthase 2 (OsNAS2) gene in bread wheat to up-regulate biosynthesis of two low molecular weight metal chelators - nicotianamine (NA) and 2'-deoxymugineic acid (DMA) - that play key roles in metal transport and nutrition. The CE-OsNAS2 plants accumulated higher concentrations of grain Fe, Zn, NA and DMA and synchrotron X-ray fluorescence microscopy (XFM) revealed enhanced localization of Fe and Zn in endosperm and crease tissues, respectively. Iron bioavailability was increased in white flour milled from field-grown CE-OsNAS2 grain and positively correlated with NA and DMA concentrations.

    Topics: Alkyl and Aryl Transferases; Azetidinecarboxylic Acid; Biological Availability; Edible Grain; Flour; Iron, Dietary; Metabolic Engineering; Oryza; Plants, Genetically Modified; Triticum

2019
Investigation of Nicotianamine and 2' Deoxymugineic Acid as Enhancers of Iron Bioavailability in Caco-2 Cells.
    Nutrients, 2019, Jun-30, Volume: 11, Issue:7

    Topics: Ascorbic Acid; Azetidinecarboxylic Acid; Biological Availability; Caco-2 Cells; Catechin; Flavonoids; Humans; Intestinal Mucosa; Iron; Iron Chelating Agents

2019
The ratio of phytosiderophores nicotianamine to deoxymugenic acid controls metal homeostasis in rice.
    Planta, 2019, Volume: 250, Issue:4

    The ratio of nicotianamine to deoxymugenic acid controls tissue-specific metal homeostasis in rice and regulates metal delivery to the endosperm. The metal-chelating phytosiderophores nicotianamine (NA) and 2'deoxymugenic acid (DMA) are significant factors for the control of metal homeostasis in graminaceous plants. These compounds are thought to influence metal homeostasis, but their individual roles and the effect of altering the NA:DMA ratio are unknown. We purposely generated rice lines with high and low NA:DMA ratios (HND and LND lines, respectively). The HND lines accumulated more iron (Fe), zinc (Zn), manganese (Mn) and copper (Cu) in the endosperm through the mobilization of Fe, Zn and Mn from the seed husk to the endosperm. In contrast, Fe, Zn and Mn were mobilized to the husk in the LND lines, whereas Cu accumulated in the endosperm. Different groups of metals are, therefore, taken up, transported and sequestered in vegetative tissues in the HND and LND lines to achieve this metal distribution pattern in the seeds. We found that different sets of endogenous metal homeostasis genes were modulated in the HND and LND lines to achieve differences in metal homeostasis. Our findings demonstrate that the NA:DMA ratio is a key factor regulating metal homeostasis in graminaceous plants. These findings can help formulate refined strategies to improve nutrient composition and nutrient use efficiency in crop plants.

    Topics: Azetidinecarboxylic Acid; Biological Transport; Endosperm; Homeostasis; Iron; Manganese; Metals; Oryza; Siderophores; Transcriptome; Zinc

2019
Phytosiderophores determine thresholds for iron and zinc accumulation in biofortified rice endosperm while inhibiting the accumulation of cadmium.
    Journal of experimental botany, 2017, 10-13, Volume: 68, Issue:17

    Nicotianamine (NA) and 2'-deoxymugenic acid (DMA) are metal-chelating ligands that promote the accumulation of metals in rice endosperm, but it is unclear how these phytosiderophores regulate the levels of different metals and limit their accumulation. In this study, transgenic rice plants producing high levels of NA and DMA accumulated up to 4-fold more iron (Fe) and 2-fold more zinc (Zn) in the endosperm compared with wild-type plants. The distribution of Fe and Zn in vegetative tissues suggested that both metals are sequestered as a buffering mechanism to avoid overloading the seeds. The buffering mechanism involves the modulation of genes encoding metal transporters in the roots and aboveground vegetative tissues. As well as accumulating more Fe and Zn, the endosperm of the transgenic plants accumulated less cadmium (Cd), suggesting that higher levels of Fe and Zn competitively inhibit Cd accumulation. Our data show that although there is a strict upper limit for Fe (~22.5 µg g-1 dry weight) and Zn (~84 µg g-1 dry weight) accumulation in the endosperm, the careful selection of strategies to increase endosperm loading with essential minerals can also limit the accumulation of toxic metals such as Cd, thus further increasing the nutritional value of rice.

    Topics: Azetidinecarboxylic Acid; Cadmium; Endosperm; Iron; Oryza; Plants, Genetically Modified; Zinc

2017
Iron bioavailability in two commercial cultivars of wheat: comparison between wholegrain and white flour and the effects of nicotianamine and 2'-deoxymugineic acid on iron uptake into Caco-2 cells.
    Journal of agricultural and food chemistry, 2014, Oct-22, Volume: 62, Issue:42

    Iron bioavailability in unleavened white and wholegrain bread made from two commercial wheat varieties was assessed by measuring ferritin production in Caco-2 cells. The breads were subjected to simulated gastrointestinal digestion and the digests applied to the Caco-2 cells. Although Riband grain contained a lower iron concentration than Rialto, iron bioavailability was higher. No iron was taken up by the cells from white bread made from Rialto flour or from wholegrain bread from either variety, but Riband white bread produced a small ferritin response. The results probably relate to differences in phytate content of the breads, although iron in soluble monoferric phytate was demonstrated to be bioavailable in the cell model. Nicotianamine, an iron chelator in plants involved in iron transport, was a more potent enhancer of iron uptake into Caco-2 cells than ascorbic acid or 2'-deoxymugineic acid, another metal chelator present in plants.

    Topics: Azetidinecarboxylic Acid; Biological Availability; Bread; Caco-2 Cells; Digestion; Flour; Humans; Iron; Models, Biological; Seeds; Triticum

2014
Identification of Zn-nicotianamine and Fe-2'-Deoxymugineic acid in the phloem sap from rice plants (Oryza sativa L.).
    Plant & cell physiology, 2012, Volume: 53, Issue:2

    In higher plants, the supply of metals such as Zn and Fe via phloem is important for the growth and physiology of young organs. However, little information is available on the speciation (chemical forms) of these metals in the phloem fluids. Because the pH of phloem fluids is slightly alkaline and the concentration of phosphate, which may bind to metals, is high, Zn and Fe in phloem fluids could be precipitated if these metals do not form complexes with some ligand compounds. In the present experiment, we examined the chemical forms of Zn and Fe in phloem sap collected from rice (Oryza sativa L.) by separating the phloem sap using size-exclusion and anion-exchange chromatography, and identifying the contents using electrospray ionization time-of-flight mass spectrometry. The low molecular weight chemical forms of Zn and Fe were identified as Zn-nicotianamine and Fe(III)-2'-deoxymugineic acid complexes, respectively. This report is the first to identify metal-chelate complexes in rice phloem sap.

    Topics: Azetidinecarboxylic Acid; Chemical Fractionation; Chromatography, Gel; Chromatography, Ion Exchange; Ferric Compounds; Molecular Weight; Oryza; Phloem; Zinc Compounds

2012
Senescence-induced iron mobilization in source leaves of barley (Hordeum vulgare) plants.
    The New phytologist, 2012, Volume: 195, Issue:2

    • Retranslocation of iron (Fe) from source leaves to sinks requires soluble Fe binding forms. As much of the Fe is protein-bound and associated with the leaf nitrogen (N) status, we investigated the role of N in Fe mobilization and retranslocation under N deficiency- vs dark-induced leaf senescence. • By excluding Fe retranslocation from the apoplastic root pool, Fe concentrations in source and sink leaves from hydroponically grown barley (Hordeum vulgare) plants were determined in parallel with the concentrations of potential Fe chelators and the expression of genes involved in phytosiderophore biosynthesis. • N supply showed opposing effects on Fe pools in source leaves, inhibiting Fe export out of source leaves under N sufficiency but stimulating Fe export from source leaves under N deficiency, which partially alleviated Fe deficiency-induced chlorosis. Both triggers of leaf senescence, shading and N deficiency, enhanced NICOTIANAMINE SYNTHASE2 gene expression, soluble Fe pools in source leaves, and phytosiderophore and citrate rather than nicotianamine concentrations. • These results indicate that Fe mobilization within senescing leaves is independent of a concomitant N sink in young leaves and that phytosiderophores enhance Fe solubility in senescing source leaves, favoring subsequent Fe retranslocation.

    Topics: Azetidinecarboxylic Acid; Biological Transport; Citric Acid; Darkness; Gene Expression Regulation, Plant; Hordeum; Iron; Nitrogen; Phenotype; Plant Leaves; Plant Proteins; RNA, Messenger; Solubility

2012
OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints.
    Plant molecular biology, 2009, Volume: 70, Issue:6

    Iron uptake and translocation in plants are important processes for both plant and human nutrition, whereas relatively little is known about the molecular mechanisms of iron transport within the plant body. Several reports have shown that yellow stripe 1 (YS1) and YS1-like (YSL) transporters mediate metal-phytosiderophore uptake and/or metal-nicotianamine translocation. Among the 18 YSL genes in rice (OsYSLs), OsYSL18 is predicted to encode a polypeptide of 679 amino acids containing 13 putative transmembrane domains. An OsYSL18-green fluorescent protein (GFP) fusion was localized to the plasma membrane when transiently expressed in onion epidermal cells. Electrophysiological measurements using Xenopus laevis oocytes showed that OsYSL18 transports iron(III)-deoxymugineic acid, but not iron(II)-nicotianamine, zinc(II)-deoxymugineic acid, or zinc(II)-nicotianamine. Reverse transcriptase PCR analysis revealed more OsYSL18 transcripts in flowers than in shoots or roots. OsYSL18 promoter-beta-glucuronidase (GUS) analysis revealed that OsYSL18 was expressed in reproductive organs including the pollen tube. In vegetative organs, OsYSL18 was specifically expressed in lamina joints, the inner cortex of crown roots, and phloem parenchyma and companion cells at the basal part of every leaf sheath. These results suggest that OsYSL18 is an iron-phytosiderophore transporter involved in the translocation of iron in reproductive organs and phloem in joints.

    Topics: Amino Acid Sequence; Animals; Azetidinecarboxylic Acid; Base Sequence; Biological Transport, Active; DNA Primers; Female; Ferric Compounds; Gene Expression; Genes, Plant; In Vitro Techniques; Membrane Transport Proteins; Molecular Sequence Data; Oocytes; Oryza; Phloem; Phylogeny; Plant Proteins; Plants, Genetically Modified; Recombinant Fusion Proteins; Sequence Homology, Amino Acid; Siderophores; Tissue Distribution; Xenopus laevis

2009
A highly sensitive, quick and simple quantification method for nicotianamine and 2'-deoxymugineic acid from minimum samples using LC/ESI-TOF-MS achieves functional analysis of these components in plants.
    Plant & cell physiology, 2009, Volume: 50, Issue:11

    A highly sensitive quantitative method for assaying nicotianamine (NA) and 2'-deoxymugineic acid (DMA) using liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOF-MS) was developed. The amino and hydroxyl groups of NA and DMA were derivatized using 9-fluorenylmethoxycarbonyl chloride. The amounts of NA and DMA in 10 mul of xylem sap from rice cultivated under iron (Fe)-sufficient and Fe-deficient conditions were quantified without concentration. In Fe-sufficient plants, the concentrations of NA and DMA were almost equal to that of Fe. In Fe-deficient plants, the concentration of NA did not change significantly, whereas that of DMA increased markedly.

    Topics: Azetidinecarboxylic Acid; Chromatography, Liquid; Iron; Oryza; Spectrometry, Mass, Electrospray Ionization; Xylem

2009
Investigation of ascorbate-mediated iron release from ferric phytosiderophores in the presence of nicotianamine.
    Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 2008, Volume: 21, Issue:5

    Phytosiderophores (PS) are strong iron chelators, produced by graminaceous plants under iron deficiency. The ability of released PS to chelate iron(III), and subsequent uptake of this chelate into roots by YS1-type transport proteins, are well-known. The mechanism of iron release from the stable chelate inside the plant cell, however, is unclear. One possibility involves the reduction of ferric PS in the presence of an iron(II) chelator via ternary complex formation. Here, the conversion of ferric PS species by ascorbate in the presence of the intracellular ligand nicotianamine (NA) has been investigated at cytosolic pH (pH 7.3), leading to the formation of a ferrous NA chelate. This reaction takes place when supplying Fe(III) as a chelate with 2'-deoxymugineic acid (DMA), mugineic acid (MA), and 3-epi-hydroxymugineic acid (epi-HMA), with the reaction rate decreasing in this order. The progress of the conversion of ferric DMA to ferrous NA was monitored in real-time by high resolution mass spectrometry (FTICR-MS), and the results are complemented by electrochemical measurements (cyclic voltammetry), which allows detecting reactive intermediates and their change with time at high sensitivity. Hence, the combined results of electrochemistry and mass spectrometry indicate an ascorbate-mediated mechanism for the iron release from ferric PS, which highlights the role of ascorbate as a simple, but effective plant reductant.

    Topics: Ascorbic Acid; Azetidinecarboxylic Acid; Electrochemistry; Iron; Kinetics; Molecular Structure; Siderophores; Time Factors

2008
Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice.
    Plant physiology, 2007, Volume: 145, Issue:4

    Higher plants acquire iron (Fe) from the rhizosphere through two strategies. Strategy II, employed by graminaceous plants, involves secretion of phytosiderophores (e.g. deoxymugineic acid in rice [Oryza sativa]) by roots to solubilize Fe(III) in soil. In addition to taking up Fe in the form of Fe(III)-phytosiderophore, rice also possesses the strategy I-like system that may absorb Fe(II) directly. Through mutant screening, we isolated a rice mutant that could not grow with Fe(III)-citrate as the sole Fe source, but was able to grow when Fe(II)-EDTA was supplied. Surprisingly, the mutant accumulated more Fe and other divalent metals in roots and shoots than the wild type when both were supplied with EDTA-Fe(II) or grown under water-logged field conditions. Furthermore, the mutant had a significantly higher concentration of Fe in both unpolished and polished grains than the wild type. Using the map-based cloning method, we identified a point mutation in a gene encoding nicotianamine aminotransferase (NAAT1), which was responsible for the mutant phenotype. Because of the loss of function of NAAT1, the mutant failed to produce deoxymugineic acid and could not absorb Fe(III) efficiently. In contrast, nicotianamine, the substrate for NAAT1, accumulated markedly in roots and shoots of the mutant. Microarray analysis showed that the expression of a number of the genes involved in Fe(II) acquisition was greatly stimulated in the naat1 mutant. Our results demonstrate that disruption of deoxymugineic acid biosynthesis can stimulate Fe(II) acquisition and increase iron accumulation in rice.

    Topics: Amino Acid Sequence; Azetidinecarboxylic Acid; Cations, Divalent; DNA Mutational Analysis; Genes, Plant; Iron; Molecular Sequence Data; Oryza; Point Mutation; Seedlings; Seeds; Transaminases; Up-Regulation

2007
Revisiting the metal-binding chemistry of nicotianamine and 2'-deoxymugineic acid. Implications for iron nutrition in strategy II plants.
    Plant physiology, 2002, Volume: 129, Issue:4

    Topics: Azetidinecarboxylic Acid; Binding Sites; Biological Transport, Active; Chelating Agents; Cytoplasm; Edetic Acid; Ferric Compounds; Ferrous Compounds; Hydrogen-Ion Concentration; Hydrolysis; Iron; Ligands; Models, Chemical; Oxidation-Reduction; Plants; Siderophores

2002