nicardipine and mitoxantrone

nicardipine has been researched along with mitoxantrone in 12 studies

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's7 (58.33)29.6817
2010's5 (41.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Huang, L; Humphreys, JE; Morgan, JB; Polli, JW; Serabjit-Singh, CS; Webster, LO; Wring, SA1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Lombardo, F; Obach, RS; Waters, NJ1
Artursson, P; Bergström, CA; Hoogstraate, J; Matsson, P; Norinder, U; Pedersen, JM1
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV1
Chen, X; Lin, X; Skolnik, S; Wang, J1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Artursson, P; Mateus, A; Matsson, P1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Ambudkar, SV; Bates, SE; Robey, RW; Shukla, S1
Bin, ZQ; Dong, WA; Hua, C; Jin, Y; Jun, D; Liang, C; Qiang, H; Qing, L1
Ben-Zvi, Z; Erez, O; Eshkoli, T; Feinshtein, V; Holcberg, G; Sheiner, E; Sheizaf, B1

Reviews

1 review(s) available for nicardipine and mitoxantrone

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

11 other study(ies) available for nicardipine and mitoxantrone

ArticleYear
Rational use of in vitro P-glycoprotein assays in drug discovery.
    The Journal of pharmacology and experimental therapeutics, 2001, Volume: 299, Issue:2

    Topics: Adenosine Triphosphatases; Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cells, Cultured; Chromatography, Liquid; Enzyme Inhibitors; Fluoresceins; Fluorescent Dyes; Humans; Mass Spectrometry; Pharmacology; Spodoptera

2001
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2).
    Journal of medicinal chemistry, 2008, Jun-12, Volume: 51, Issue:11

    Topics: Administration, Oral; Animals; Antineoplastic Agents; Antipsychotic Agents; Antiviral Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Line; Computer Simulation; Cytochrome P-450 Enzyme System; Drug-Related Side Effects and Adverse Reactions; Estradiol; Humans; Insecta; Liver; Models, Molecular; Multidrug Resistance-Associated Protein 2; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Pharmaceutical Preparations; Pharmacology; Structure-Activity Relationship

2008
Physicochemical determinants of human renal clearance.
    Journal of medicinal chemistry, 2009, Aug-13, Volume: 52, Issue:15

    Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight

2009
Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model.
    Drug metabolism and disposition: the biological fate of chemicals, 2011, Volume: 39, Issue:2

    Topics: Adenosine; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Sub-Family B Member 4; ATP-Binding Cassette Transporters; Biological Transport; Caco-2 Cells; Chromatography, Liquid; Dibenzocycloheptenes; Diketopiperazines; Drug Discovery; Heterocyclic Compounds, 4 or More Rings; Humans; Intestinal Absorption; Mass Spectrometry; Models, Biological; Neoplasm Proteins; Pharmaceutical Preparations; Predictive Value of Tests; Propionates; Quinolines; Substrate Specificity

2011
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
A high-throughput cell-based method to predict the unbound drug fraction in the brain.
    Journal of medicinal chemistry, 2014, Apr-10, Volume: 57, Issue:7

    Topics: Animals; Brain; Dialysis; HEK293 Cells; High-Throughput Screening Assays; Humans; Pharmaceutical Preparations; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2014
The calcium channel blockers, 1,4-dihydropyridines, are substrates of the multidrug resistance-linked ABC drug transporter, ABCG2.
    Biochemistry, 2006, Jul-25, Volume: 45, Issue:29

    Topics: Adenosine Triphosphate; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Azides; Calcium Channel Blockers; Cell Line; Chlorophyll; Dihydropyridines; Drug Interactions; Humans; Mitoxantrone; Neoplasm Proteins; Nicardipine; Nifedipine; Photoaffinity Labels; Prazosin

2006
ABCG2 is related with the grade of glioma and resistance to mitoxantone, a chemotherapeutic drug for glioma.
    Journal of cancer research and clinical oncology, 2009, Volume: 135, Issue:10

    Topics: Animals; Antineoplastic Agents; Apoptosis; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Brain Neoplasms; Cell Differentiation; Cell Proliferation; Drug Resistance, Neoplasm; Glioma; Humans; Immunoenzyme Techniques; Mice; Mice, Nude; Mitoxantrone; Neoplasm Proteins; Neoplasm Staging; Neoplastic Stem Cells; Nicardipine; Prognosis; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Survival Rate; Tissue Array Analysis; Tumor Cells, Cultured; Vasodilator Agents

2009
Cannabidiol enhances xenobiotic permeability through the human placental barrier by direct inhibition of breast cancer resistance protein: an ex vivo study.
    American journal of obstetrics and gynecology, 2013, Volume: 209, Issue:6

    Topics: Analysis of Variance; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Cannabidiol; Cell Line; Cell Survival; Chromatography, High Pressure Liquid; Enzyme-Linked Immunosorbent Assay; Female; Glyburide; Humans; Maternal-Fetal Exchange; Mitoxantrone; Models, Biological; Neoplasm Proteins; Nicardipine; Perfusion; Placenta; Pregnancy; Trophoblasts

2013