niacinamide and u 0126

niacinamide has been researched along with u 0126 in 12 studies

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (33.33)29.6817
2010's8 (66.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Colombi, M; Kiser, KF; Moroni, C1
Flaherty, KT; Garbe, C; Kulms, D; Lasithiotakis, KG; Maczey, E; Meier, FE; Schittek, B; Sinnberg, TW1
Becker, JC; Hofmeister, V; Houben, R; Noelke, C; Schrama, D; Voigt, H1
Braun, M; Buness, A; Conrad, J; Falk, CS; Krapfenbauer, U; Kuner, R; Lund, P; Mang-Fatehi, S; Poustka, A; Ruschhaupt, M; Schäfer, R; Sers, C; Stelniec, I; Sueltmann, H1
Ali-Osman, F; Augustine, CK; Beasley, GM; Burchette, J; Jung, SH; McMahon, N; Padussis, J; Pruitt, SK; Selim, MA; Toshimitsu, H; Tyler, DS; Yoo, JS; Yoshimoto, Y; Zipfel, PA1
Allegra, M; Bahadoran, P; Ballotti, R; Bertolotto, C; Deville, A; Giacchero, D; Lacour, JP; Ortonne, JP; Passeron, T; Ségalen, C; Thyss, A1
Corey, SJ; Park, BJ; Whichard, ZL1
Chang, JW; Han, NJ; Lee, SK; Park, SK; Yang, WS1
Chen, Y; He, CM; Lin, DJ; Ruan, XX; Wang, LL; Xiao, RZ; Xiong, MJ1
Chen, W; Deng, J; Li, X; Wu, XY; Zhang, L; Zhang, YN; Zhong, CJ; Zhong, N1
Graham, RM; Thompson, JW; Webster, KA1
Anderson, DG; Conte, D; Fischer, A; Hough, S; Kennedy, Z; Li, Y; Moore, J; Mou, H; Park, A; Pomyen, Y; Song, CQ; Thorgeirsson, S; Wang, XW; Weng, Z; Xue, W; Yin, H; Zender, L1

Other Studies

12 other study(ies) available for niacinamide and u 0126

ArticleYear
Isolation and characterization of dominant and recessive IL-3-independent hematopoietic transformants.
    Oncogene, 2006, Oct-26, Volume: 25, Issue:50

    Topics: Aminacrine; Benzenesulfonates; Butadienes; Cell Transformation, Neoplastic; Clone Cells; Frameshift Mutation; Genes, Dominant; Genes, Recessive; Hematopoiesis; Humans; Interleukin-3; MAP Kinase Kinase Kinases; Mutagenesis, Insertional; Neoplastic Stem Cells; Niacinamide; Nitriles; Nitrogen Mustard Compounds; Phenylurea Compounds; Proto-Oncogene Proteins c-raf; Pyridines; Retroviridae; Sorafenib; STAT5 Transcription Factor; Transfection

2006
Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells.
    The Journal of investigative dermatology, 2008, Volume: 128, Issue:8

    Topics: Androstadienes; Apoptosis; Benzenesulfonates; Butadienes; Cell Line, Tumor; Cell Proliferation; Chromones; Down-Regulation; Flavonoids; Humans; Mechanistic Target of Rapamycin Complex 1; Melanoma; Mitogen-Activated Protein Kinase Kinases; Morpholines; Multiprotein Complexes; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasm Invasiveness; Niacinamide; Nitriles; Phenylurea Compounds; Protein Kinase Inhibitors; Proteins; Proto-Oncogene Proteins c-bcl-2; Pyridines; Signal Transduction; Sirolimus; Skin Neoplasms; Sorafenib; TOR Serine-Threonine Kinases; Transcription Factors; Wortmannin

2008
MAPK-independent impairment of T-cell responses by the multikinase inhibitor sorafenib.
    Molecular cancer therapeutics, 2009, Volume: 8, Issue:2

    Topics: Antibodies; Antigens, Neoplasm; Benzenesulfonates; Butadienes; CD28 Antigens; CD3 Complex; Epitopes; Extracellular Signal-Regulated MAP Kinases; Humans; Interleukin-2 Receptor alpha Subunit; Lymphocyte Activation; MAP Kinase Signaling System; Mitogen-Activated Protein Kinases; Niacinamide; Nitriles; Phenylurea Compounds; Phosphorylation; Phytohemagglutinins; Protein Kinase Inhibitors; Pyridines; Receptors, Antigen, T-Cell; Signal Transduction; Sorafenib; T-Lymphocytes; Tetradecanoylphorbol Acetate

2009
Down-regulation of HLA Class I and NKG2D ligands through a concerted action of MAPK and DNA methyltransferases in colorectal cancer cells.
    International journal of cancer, 2009, Oct-01, Volume: 125, Issue:7

    Topics: Antineoplastic Agents; Benzenesulfonates; Butadienes; Colonic Neoplasms; DNA (Cytosine-5-)-Methyltransferase 1; DNA (Cytosine-5-)-Methyltransferases; DNA Methyltransferase 3B; Down-Regulation; Enzyme Inhibitors; Gene Expression Regulation, Neoplastic; GPI-Linked Proteins; HCT116 Cells; HLA-A2 Antigen; Humans; Intercellular Signaling Peptides and Proteins; Killer Cells, Natural; Mitogen-Activated Protein Kinase Kinases; Mutation; Niacinamide; Nitriles; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins; Proto-Oncogene Proteins p21(ras); Pyridines; ras Proteins; Sorafenib

2009
Sorafenib, a multikinase inhibitor, enhances the response of melanoma to regional chemotherapy.
    Molecular cancer therapeutics, 2010, Volume: 9, Issue:7

    Topics: Animals; Antineoplastic Agents, Alkylating; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Benzenesulfonates; Blotting, Western; Butadienes; Cell Line, Tumor; Cell Survival; Dacarbazine; Drug Synergism; Extracellular Signal-Regulated MAP Kinases; Female; Humans; Melanoma; Melphalan; Mutation; Myeloid Cell Leukemia Sequence 1 Protein; Niacinamide; Nitriles; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-bcl-2; Pyridines; Rats; Rats, Nude; Sorafenib; Temozolomide; Tumor Burden; Xenograft Model Antitumor Assays

2010
Signalling and chemosensitivity assays in melanoma: is mutated status a prerequisite for targeted therapy?
    Experimental dermatology, 2011, Volume: 20, Issue:12

    Topics: Adolescent; Antineoplastic Agents; Benzenesulfonates; Butadienes; Cell Survival; Dacarbazine; Drug Therapy, Combination; Extracellular Signal-Regulated MAP Kinases; Fatal Outcome; Female; Genes, ras; Humans; Melanoma; Molecular Targeted Therapy; Mutation; Niacinamide; Nitriles; Nitrosourea Compounds; Organophosphorus Compounds; Phenylurea Compounds; Phosphorylation; Precision Medicine; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-kit; Pyridines; Signal Transduction; Sorafenib; Treatment Outcome

2011
Dasatinib synergizes with both cytotoxic and signal transduction inhibitors in heterogeneous breast cancer cell lines--lessons for design of combination targeted therapy.
    Cancer letters, 2012, Jul-01, Volume: 320, Issue:1

    Topics: Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Breast Neoplasms; Butadienes; Cell Line, Tumor; Chromones; Dasatinib; Dose-Response Relationship, Drug; Drug Synergism; Enzyme Inhibitors; Epothilones; Female; Humans; Morpholines; Niacinamide; Nitriles; Paclitaxel; Phenylurea Compounds; Pyridines; Pyrimidines; Signal Transduction; Sirolimus; Sorafenib; Tamoxifen; Thiazoles

2012
Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-β1 up-regulation in proximal tubular epithelial cells.
    Experimental cell research, 2012, Sep-10, Volume: 318, Issue:15

    Topics: Base Sequence; Butadienes; Cell Line; Diabetic Nephropathies; DNA Primers; Epithelial Cells; Glucose; Humans; I-kappa B Proteins; Intracellular Signaling Peptides and Proteins; Kidney Tubules, Proximal; MAP Kinase Signaling System; NF-kappa B; NF-KappaB Inhibitor alpha; Niacinamide; Nitriles; p21-Activated Kinases; Protein-Tyrosine Kinases; Pyrimidines; RNA, Messenger; RNA, Small Interfering; Signal Transduction; Spleen; Syk Kinase; Transcription Factor AP-1; Transforming Growth Factor beta1; Up-Regulation

2012
Inhibition of extracellular signal-regulated kinase activity by sorafenib increases sensitivity to DNR in K562 cells.
    Oncology reports, 2013, Volume: 29, Issue:5

    Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Butadienes; Cell Line, Tumor; Cell Proliferation; Daunorubicin; Drug Synergism; Extracellular Signal-Regulated MAP Kinases; Humans; K562 Cells; MAP Kinase Signaling System; Mitogen-Activated Protein Kinases; Niacinamide; Nitriles; Phenylurea Compounds; Phosphorylation; Signal Transduction; Sorafenib; U937 Cells; Up-Regulation

2013
Stimulatory effects of sorafenib on human non‑small cell lung cancer cells in vitro by regulating MAPK/ERK activation.
    Molecular medicine reports, 2014, Volume: 9, Issue:1

    Topics: Antineoplastic Agents; Apoptosis; bcl-2-Associated X Protein; Butadienes; Carcinoma, Non-Small-Cell Lung; Cell Cycle Checkpoints; Cell Line, Tumor; Cyclin D1; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Humans; Liver Neoplasms; MAP Kinase Kinase Kinases; Niacinamide; Nitriles; Phenylurea Compounds; Phosphorylation; Signal Transduction; Sorafenib

2014
Inhibition of the vacuolar ATPase induces Bnip3-dependent death of cancer cells and a reduction in tumor burden and metastasis.
    Oncotarget, 2014, Mar-15, Volume: 5, Issue:5

    Topics: Animals; Antineoplastic Agents; Apoptosis; Breast Neoplasms; Butadienes; Cell Hypoxia; Enzyme Inhibitors; Gene Knockdown Techniques; Heterografts; Humans; Hydrogen-Ion Concentration; Macrolides; MAP Kinase Signaling System; MCF-7 Cells; Membrane Proteins; Mice; Neoplasm Metastasis; Niacinamide; Nitriles; Phenylurea Compounds; Proto-Oncogene Proteins; Sorafenib; Tumor Burden; Vacuolar Proton-Translocating ATPases

2014
Genome-Wide CRISPR Screen Identifies Regulators of Mitogen-Activated Protein Kinase as Suppressors of Liver Tumors in Mice.
    Gastroenterology, 2017, Volume: 152, Issue:5

    Topics: Animals; Benzimidazoles; Blotting, Western; Butadienes; Carcinoma, Hepatocellular; Cell Line, Tumor; CRISPR-Cas Systems; Cytoskeletal Proteins; DNA, Neoplasm; Enzyme Inhibitors; Gene Expression Regulation, Neoplastic; Genes, Neurofibromatosis 1; Genome-Wide Association Study; Hepatocytes; High-Throughput Nucleotide Sequencing; HMGA Proteins; HMGA2 Protein; Humans; Immunohistochemistry; Liver Neoplasms; Liver Neoplasms, Experimental; Membrane Glycoproteins; Mice; Mice, Knockout; Mice, Nude; Mitogen-Activated Protein Kinases; Nerve Tissue Proteins; Niacinamide; Nitriles; Phenylurea Compounds; Prognosis; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-myc; Pyridones; Pyrimidinones; ras Proteins; Real-Time Polymerase Chain Reaction; Receptors, Cell Surface; Sequence Analysis, DNA; Sorafenib; Survival Analysis; Tumor Suppressor Protein p53; Tumor Suppressor Proteins

2017