niacinamide has been researched along with s 1033 in 32 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 6 (18.75) | 29.6817 |
2010's | 25 (78.13) | 24.3611 |
2020's | 1 (3.13) | 2.80 |
Authors | Studies |
---|---|
Blanke, C | 1 |
von Mehren, M | 1 |
Agaram, NP; Antonescu, CR; Besmer, P; Clarkson, BD; D'Adamo, D; DeMatteo, RP; Guo, T; Hom, G; Maki, RG; Schwartz, GK; Singer, S; Veach, D; Wong, GC | 1 |
Thomas, X | 1 |
Bui, B; Italiano, A | 1 |
Gelderblom, H; Guchelaar, HJ; van Erp, NP | 1 |
Bonvalot, S; Cioffi, A; Dômont, J; Le Cesne, A; Tardieu, M | 1 |
Iordanov, MS; Magun, BE; Magun, EA; Sauter, KA | 1 |
Aberg, E; Duyster, J; Engh, RA; Gorantla, SP; Oliveira, TM; Peschel, C; Thöne, S; von Bubnoff, N | 1 |
Abe, K; Alzoubi, A; Fagan, KA; Gairhe, S; Gerthoffer, WT; Ito, M; Koubsky, K; McMurtry, IF; Oka, M; Ota, H; Toba, M | 1 |
Geoerger, B; Leblond, P | 1 |
Blay, JY; Chaigneau, L; Curtit, E; Dobi, E; Kalbacher, E; Mansi, L; Nguyen, T; Pivot, X; Viel, E | 1 |
Cross, NC; Erben, P; Hochhaus, A; Hofmann, WK; Klippstein, T; Martin, H; Metzgeroth, G; Mousset, S; Reiter, A; Teichmann, M; Walz, C | 1 |
Adenis, A; Antonescu, CR; Blay, JY; Bompas, E; Bui, B; Casali, P; Cioffi, A; Coco, P; Coindre, JM; Debiec-Rychter, M; Duffaud, F; Isambert, N; Italiano, A; Keohan, ML; Le Cesne, A; Maki, RG; Rutkowski, P; Schöffski, P; Toulmonde, M | 1 |
George, S; Hornick, JL; Jagannathan, JP; Ramaiya, NH; Shinagare, AB | 1 |
Balakrishnar, B; Clements, A; Gao, B; Gurney, H; Wong, M; Yeap, S | 1 |
Bauer, S; Bitz, U; Blay, JY; Duffaud, F; Gelderblom, H; Joensuu, H; Montemurro, M; Pink, D; Rutkowski, P; Schütte, J; Trent, J | 1 |
Beijnen, JH; Harmsen, S; Maas-Bakker, RF; Meijerman, I; Schellens, JH | 1 |
Andriamanana, I; Duretz, B; Gana, I; Hulin, A | 1 |
Robert, C; Sibaud, V | 1 |
Bergot, E; Godinas, L; Guignabert, C; Humbert, M; Montani, D; Perros, F; Seferian, A; Sibille, Y | 1 |
Ding, JF; Zhong, DF | 1 |
Chang, CY; Huang, YS; Su, BH; Tseng, YJ; Tu, YS | 1 |
Beaune, P; de Waziers, I; Favre, A; Figg, WD; Kiehl, P; McMullen, J; Montemurro, M; Narjoz, C; Rochat, B | 1 |
Lykkesfeldt, AE; Pedersen, AM; Thrane, S; Yde, CW | 1 |
Chen, TC; Chen, YC; Chien, CC; Lee, YC; Wu, MS; Yu, MC | 1 |
Brossart, P; Diehl, L; Garbi, N; Gevensleben, H; Grünwald, B; Heine, A; Held, SA; Höchst, B; Knolle, P; Krüger, A; Kurts, C; Schilling, J | 1 |
Archibald, M; Greish, K; Nehoff, H; Pritchard, T; Rosengren, RJ; Taurin, S | 1 |
Berellini, G; Bitter, H; Branford, S; Buonamici, S; Cowan-Jacob, SW; Dodd, S; Donovan, J; Furet, P; Hassan, AQ; Hofmann, F; Hughes, TP; Iyer, V; Jahnke, W; Keen, NJ; Lombardo, F; Loo, A; Marzinzik, AL; Palmer, M; Pelle, X; Petruzzelli, L; Ross, DM; Schoepfer, J; Sellers, WR; Thohan, S; Vanasse, KG; Warmuth, M; Wylie, AA; Zhu, W | 1 |
Appiah-Kubi, P; El Rashedy, AA; Soliman, MES | 1 |
Elrashedy, AA; Ramharack, P; Soliman, MES | 1 |
Amiri, W; Friedman, R; Lindahl, E; Oruganti, B; Rahimullah, R; Yang, J | 1 |
10 review(s) available for niacinamide and s 1033
Article | Year |
---|---|
Beyond imatinib: second generation c-KIT inhibitors for the management of gastrointestinal stromal tumors.
Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzamides; Bevacizumab; Clinical Trials as Topic; Dasatinib; Drug Resistance, Neoplasm; Everolimus; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Immunosuppressive Agents; Indoles; Niacinamide; Oligonucleotides; Piperazines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-kit; Pyrimidines; Pyrroles; Sirolimus; Staurosporine; Sunitinib; Thiazoles | 2006 |
[Acute lymphoblastic leukemia with Philadelphia chromosome: treatment with kinase inhibitors].
Topics: Alkyl and Aryl Transferases; Antineoplastic Agents; Benzamides; Benzenesulfonates; Dasatinib; Drug Resistance, Neoplasm; Fusion Proteins, bcr-abl; Humans; Imatinib Mesylate; Indoles; Niacinamide; Phenylurea Compounds; Piperazines; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Pyrroles; Sorafenib; Sunitinib; Thiazoles | 2007 |
[Gastrointestinal stromal tumors: molecular aspects and therapeutic implications].
Topics: Antineoplastic Agents; Benzamides; Benzenesulfonates; Disease Progression; Drug Resistance, Neoplasm; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Indoles; Mutation; Neoplasm Proteins; Niacinamide; Oligonucleotides; Phenylurea Compounds; Phthalazines; Piperazines; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-kit; Pyridines; Pyrimidines; Pyrroles; Receptor, Platelet-Derived Growth Factor alpha; Sorafenib; Staurosporine; Sunitinib; Thiazoles | 2008 |
Clinical pharmacokinetics of tyrosine kinase inhibitors.
Topics: Administration, Oral; Antineoplastic Agents; Benzamides; Benzenesulfonates; Biological Availability; Cytochrome P-450 Enzyme System; Dasatinib; Drug Interactions; Erlotinib Hydrochloride; Gefitinib; Humans; Imatinib Mesylate; Indoles; Intestinal Absorption; Lapatinib; Niacinamide; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thiazoles; Tissue Distribution | 2009 |
[Focus on GIST management].
Topics: Antineoplastic Agents; Benzamides; Benzenesulfonates; Chemotherapy, Adjuvant; Drug Resistance, Neoplasm; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Indoles; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Pyrroles; Sorafenib; Sunitinib; Thiazoles | 2010 |
[Indications and current development of new targeted therapies in pediatric oncology].
Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzamides; Benzenesulfonates; Bevacizumab; Child; Dasatinib; Erlotinib Hydrochloride; Hedgehog Proteins; Humans; Imatinib Mesylate; Indoles; Integrins; Molecular Targeted Therapy; Neoplasms; Niacinamide; Nifurtimox; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thiazoles; TOR Serine-Threonine Kinases | 2011 |
Evidence for therapeutic drug monitoring of targeted anticancer therapies.
Topics: Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antibodies, Monoclonal, Murine-Derived; Antineoplastic Agents; Area Under Curve; Benzamides; Benzenesulfonates; Cetuximab; Dasatinib; Drug Monitoring; Everolimus; Evidence-Based Medicine; Half-Life; Humans; Imatinib Mesylate; Indoles; Injections, Intravenous; Molecular Targeted Therapy; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Pyridines; Pyrimidines; Pyrroles; Rituximab; Sirolimus; Sorafenib; Sunitinib; Thiazoles | 2012 |
[Pigmentary disorders induced by anticancer agents. Part II: targeted therapies].
Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzamides; Cetuximab; Dasatinib; ErbB Receptors; Humans; Imatinib Mesylate; Indazoles; Indoles; Ipilimumab; Niacinamide; Phenylurea Compounds; Pigmentation Disorders; Piperazines; Piperidines; Programmed Cell Death 1 Receptor; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Sulfonamides; Sunitinib; Thiazoles | 2013 |
Tyrosine kinase inhibitors in pulmonary arterial hypertension: a double-edge sword?
Topics: Apoptosis; Benzamides; Cell Proliferation; Dasatinib; Endothelial Cells; ErbB Receptors; Familial Primary Pulmonary Hypertension; Fibroblast Growth Factor 2; Fibroblasts; Humans; Hypertension, Pulmonary; Imatinib Mesylate; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Niacinamide; Phenylurea Compounds; Piperazines; Platelet-Derived Growth Factor; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-kit; Pulmonary Circulation; Pyrimidines; Receptor Protein-Tyrosine Kinases; Sorafenib; src-Family Kinases; Thiazoles; Treatment Outcome; Vascular Endothelial Growth Factor A | 2013 |
[Clinical pharmacokinetics of small molecule tyrosine kinase inhibitors].
Topics: Antineoplastic Agents; Crown Ethers; Cytochrome P-450 Enzyme System; Dasatinib; Drug Interactions; Erlotinib Hydrochloride; Gefitinib; Glucuronosyltransferase; Humans; Imatinib Mesylate; Indoles; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib | 2013 |
22 other study(ies) available for niacinamide and s 1033
Article | Year |
---|---|
Current and future management of GIST.
Topics: Antineoplastic Agents; Benzamides; Benzenesulfonates; Benzoquinones; Disease Progression; Dose-Response Relationship, Drug; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Indoles; Lactams, Macrocyclic; Niacinamide; Phenylurea Compounds; Piperazines; Pyridines; Pyrimidines; Pyrroles; Sorafenib; Sunitinib; Treatment Outcome | 2006 |
Sorafenib inhibits the imatinib-resistant KITT670I gatekeeper mutation in gastrointestinal stromal tumor.
Topics: Animals; Antineoplastic Agents; Apoptosis; Benzamides; Benzenesulfonates; Cell Proliferation; Dasatinib; Drug Resistance, Neoplasm; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Mice; Mutation; Niacinamide; Phenylurea Compounds; Phosphorylation; Piperazines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-kit; Pyridines; Pyrimidines; Sorafenib; Thiazoles | 2007 |
ZAK is required for doxorubicin, a novel ribotoxic stressor, to induce SAPK activation and apoptosis in HaCaT cells.
Topics: Antibiotics, Antineoplastic; Apoptosis; Benzenesulfonates; Cell Line, Tumor; Doxorubicin; HeLa Cells; Humans; Keratinocytes; MAP Kinase Kinase Kinases; Mitogen-Activated Protein Kinases; Niacinamide; Phenylurea Compounds; Phosphorylation; Protein Kinase Inhibitors; Protein Kinases; Pyridines; Pyrimidines; RNA, Small Interfering; Signal Transduction; Sorafenib | 2010 |
The low frequency of clinical resistance to PDGFR inhibitors in myeloid neoplasms with abnormalities of PDGFRA might be related to the limited repertoire of possible PDGFRA kinase domain mutations in vitro.
Topics: Amino Acid Sequence; Antineoplastic Agents; Benzamides; Benzenesulfonates; Blotting, Western; Cell Line, Tumor; Drug Resistance, Neoplasm; Humans; Imatinib Mesylate; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Molecular Sequence Data; Mutagenesis, Site-Directed; Mutation; Myeloproliferative Disorders; Niacinamide; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein Structure, Tertiary; Pyridines; Pyrimidines; Receptor, Platelet-Derived Growth Factor alpha; Reverse Transcriptase Polymerase Chain Reaction; Sorafenib; Structure-Activity Relationship | 2011 |
Tyrosine kinase inhibitors are potent acute pulmonary vasodilators in rats.
Topics: Animals; Antihypertensive Agents; Benzamides; Benzenesulfonates; Blotting, Western; Calcium; Disease Models, Animal; Dose-Response Relationship, Drug; Hypertension, Pulmonary; Imatinib Mesylate; Male; Myosin Light Chains; Myosin-Light-Chain Phosphatase; Niacinamide; Phenylurea Compounds; Phosphorylation; Piperazines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pulmonary Artery; Pyridines; Pyrimidines; Rats; Rats, Sprague-Dawley; Sorafenib; Vasodilation; Vasodilator Agents; Ventricular Function, Left; Ventricular Function, Right; Ventricular Pressure | 2011 |
[KIT and KIT: from biology to clinical use].
Topics: Antineoplastic Agents; Benzamides; Benzenesulfonates; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Indoles; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Prognosis; Protein Kinase Inhibitors; Proto-Oncogene Mas; Proto-Oncogene Proteins c-kit; Pyridines; Pyrimidines; Pyrroles; Sorafenib; Sunitinib; Thiazoles | 2012 |
Limited clinical activity of nilotinib and sorafenib in FIP1L1-PDGFRA positive chronic eosinophilic leukemia with imatinib-resistant T674I mutation.
Topics: Adolescent; Adult; Aged; Antineoplastic Agents; Benzamides; Benzenesulfonates; Chronic Disease; Drug Resistance, Neoplasm; Humans; Hypereosinophilic Syndrome; Imatinib Mesylate; Male; Middle Aged; mRNA Cleavage and Polyadenylation Factors; Mutation; Niacinamide; Phenylurea Compounds; Piperazines; Pyridines; Pyrimidines; Receptor, Platelet-Derived Growth Factor alpha; Sorafenib | 2012 |
Patterns of care, prognosis, and survival in patients with metastatic gastrointestinal stromal tumors (GIST) refractory to first-line imatinib and second-line sunitinib.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Benzenesulfonates; Disease-Free Survival; Drug Resistance, Neoplasm; Female; Gastrointestinal Neoplasms; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Indoles; Liver Neoplasms; Male; Middle Aged; Multivariate Analysis; Mutation; Niacinamide; Phenylurea Compounds; Piperazines; Prognosis; Proto-Oncogene Proteins c-kit; Pyridines; Pyrimidines; Pyrroles; Receptor, Platelet-Derived Growth Factor alpha; Retrospective Studies; Risk Factors; Serum Albumin; Sorafenib; Sunitinib; Survival Rate; Young Adult | 2012 |
Intracranial metastasis from pediatric GI stromal tumor.
Topics: Adolescent; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Benzenesulfonates; Brain Neoplasms; Drug Administration Schedule; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Indoles; Liver Neoplasms; Male; Niacinamide; Phenylurea Compounds; Piperazines; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Sorafenib; Stomach Neoplasms; Sunitinib; Treatment Outcome | 2012 |
Sorafenib as third- or fourth-line treatment of advanced gastrointestinal stromal tumour and pretreatment including both imatinib and sunitinib, and nilotinib: A retrospective analysis.
Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Chemotherapy, Adjuvant; Disease Progression; Dose-Response Relationship, Drug; Drug Administration Schedule; Female; Gastrointestinal Neoplasms; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Indoles; Male; Middle Aged; Niacinamide; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Retrospective Studies; Salvage Therapy; Sorafenib; Sunitinib; Treatment Outcome; Young Adult | 2013 |
PXR-mediated P-glycoprotein induction by small molecule tyrosine kinase inhibitors.
Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily B, Member 1; Cell Line, Tumor; Drug Resistance, Neoplasm; Erlotinib Hydrochloride; Gefitinib; Humans; Niacinamide; Phenylurea Compounds; Piperidines; Pregnane X Receptor; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyrimidines; Quinazolines; Receptors, Steroid; Sorafenib | 2013 |
Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS.
Topics: Antineoplastic Agents; Benzamides; Boronic Acids; Bortezomib; Chromatography, Liquid; Dasatinib; Erlotinib Hydrochloride; Humans; Imatinib Mesylate; Indoles; Lapatinib; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Pyrazines; Pyrimidines; Pyrroles; Quinazolines; Reproducibility of Results; Sorafenib; Sunitinib; Tandem Mass Spectrometry; Thiazoles | 2013 |
Template-based de novo design for type II kinase inhibitors and its extented application to acetylcholinesterase inhibitors.
Topics: Cholinesterase Inhibitors; Drug Design; Humans; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrimidines; Sorafenib; Structure-Activity Relationship | 2013 |
Important role of CYP2J2 in protein kinase inhibitor degradation: a possible role in intratumor drug disposition and resistance.
Topics: Benzamides; Carcinoma, Hepatocellular; Cell Line, Tumor; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1B1; Cytochrome P-450 CYP2J2; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Dasatinib; Hep G2 Cells; Humans; Imatinib Mesylate; Indoles; Liver Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Reverse Transcriptase Polymerase Chain Reaction; Sorafenib; Sunitinib; Thiazoles | 2014 |
Sorafenib and nilotinib resensitize tamoxifen resistant breast cancer cells to tamoxifen treatment via estrogen receptor α.
Topics: Breast Neoplasms; Cell Proliferation; Drug Resistance, Neoplasm; Estrogen Receptor alpha; Female; Gene Expression Regulation, Neoplastic; Hepatocyte Nuclear Factor 3-alpha; Humans; MCF-7 Cells; Niacinamide; Nuclear Receptor Coactivator 3; Phenylurea Compounds; Pyrimidines; Sorafenib; Tamoxifen | 2014 |
Nilotinib reduced the viability of human ovarian cancer cells via mitochondria-dependent apoptosis, independent of JNK activation.
Topics: Antineoplastic Agents; Apoptosis; Cell Line, Tumor; DNA Fragmentation; Female; Humans; Imatinib Mesylate; JNK Mitogen-Activated Protein Kinases; Membrane Potential, Mitochondrial; Mitochondria; Niacinamide; Ovarian Neoplasms; Phenylurea Compounds; Protein-Tyrosine Kinases; Pyrimidines; Reactive Oxygen Species; Sorafenib | 2016 |
The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib.
Topics: Celecoxib; Cell Differentiation; Cells, Cultured; Dasatinib; Dose-Response Relationship, Drug; Hepatic Stellate Cells; Humans; Immune Tolerance; Indoles; Monocytes; Myeloid Cells; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Sorafenib; Sunitinib | 2016 |
A combination of sorafenib and nilotinib reduces the growth of castrate-resistant prostate cancer.
Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Blotting, Western; Cell Adhesion; Cell Cycle; Cell Movement; Cell Proliferation; Drug Carriers; Drug Delivery Systems; Fluorescent Antibody Technique, Indirect; Humans; Male; Maleates; Micelles; Niacinamide; Phenylurea Compounds; Polystyrenes; Prostatic Neoplasms, Castration-Resistant; Pyrimidines; Sorafenib; Tumor Cells, Cultured | 2016 |
The allosteric inhibitor ABL001 enables dual targeting of BCR-ABL1.
Topics: Allosteric Regulation; Allosteric Site; Animals; Catalytic Domain; Cell Proliferation; Dasatinib; Drug Resistance, Neoplasm; Drug Therapy, Combination; Fusion Proteins, bcr-abl; Humans; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Mice; Mutation; Niacinamide; Pyrazoles; Pyrimidines; Xenograft Model Antitumor Assays | 2017 |
A Synergistic Combination Against Chronic Myeloid Leukemia: An Intra-molecular Mechanism of Communication in BCR-ABL1 Resistance.
Topics: Antineoplastic Combined Chemotherapy Protocols; Drug Resistance, Neoplasm; Drug Synergism; Fusion Proteins, bcr-abl; Humans; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Molecular Dynamics Simulation; Mutation; Niacinamide; Pyrazoles; Pyrimidines | 2019 |
The Perplexity of Synergistic Duality: Inter-molecular Mechanisms of Communication in BCR-ABL1.
Topics: Antineoplastic Agents; Drug Combinations; Drug Resistance, Neoplasm; Drug Synergism; Fusion Proteins, bcr-abl; Humans; Molecular Dynamics Simulation; Niacinamide; Pyrazoles; Pyrimidines; Thermodynamics | 2019 |
Allosteric enhancement of the BCR-Abl1 kinase inhibition activity of nilotinib by cobinding of asciminib.
Topics: Adenosine Triphosphate; Antineoplastic Agents; Cell Line, Tumor; Dasatinib; Drug Resistance, Neoplasm; Fusion Proteins, bcr-abl; Humans; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Mutation; Niacinamide; Protein Kinase Inhibitors; Pyrazoles; Pyrimidines | 2022 |