niacinamide and plx4032

niacinamide has been researched along with plx4032 in 16 studies

Research

Studies (16)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's16 (100.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Rosen, N; Solit, D1
Bedeir, A; Berger, W; Ghassemi, S; Grasl-Kraupp, B; Grusch, M; Heffeter, P; Heinzle, C; Held, G; Holzmann, K; Marian, B; Metzner, T; Micksche, M; Peter-Vörösmarty, B; Pirker, C; Spiegl-Kreinecker, S1
Ardlie, K; Chalk, CJ; Dziunycz, P; Garraway, LA; Hofbauer, GF; Jones, R; Kamsukom, N; Kee, D; MacConaill, LE; McArthur, GA; Oberholzer, PA; Palescandolo, E; Piris, A; Robert, C; Roden, C; Schadendorf, D; Sucker, A1
Allegra, M; Bahadoran, P; Ballotti, R; Giacchero, D; Hofman, P; Lacour, JP; Le Duff, F; Long-Mira, E; Passeron, T1
Allegra, M; Bahadoran, P; Ballotti, R; Bastian, BC; Bollag, G; Botton, T; Burton, EA; Garrido, MC; LeBoit, PE; McCalmont, TH; Nelson, T; Rocchi, S; Sparatta, A; Vemula, SS; Yeh, I1
Choi, EK; Hong, SW; Hong, YS; Jin, DH; Kim, JS; Kim, KP; Kim, TW; Lee, CK; Lee, JL; Lee, JS; Moon, JH; Park, SJ1
Chen, K; Li, B; Shen, J; Wang, G; Wang, H; Xu, Z; Yang, M; Zeng, B; Zhu, W1
Holderfield, M; Nagel, TE; Stuart, DD1
Anseth, KS; Jones, CE; Leight, JL; Lin, AJ; Tokuda, EY1
Chen, YC; Chin, SY; Chou, CL; Jiang, MC; Lee, WR; Liu, KH; Shen, SC; Shih, YH; Tseng, JT1
Nishio, K; Togashi, Y1
Arora, R; Astorga-Wells, J; Bonnet, P; Brehmer, D; Di Michele, M; Gevaert, K; Jacoby, E; Linders, JT; Martens, L; Stes, E; van Heerde, E; Vandenbussche, J; Vandermarliere, E; Zubarev, R1
Fiskus, W; Mitsiades, N1
Amitay-Laish, I; Didkovsky, E; Hendler, D; Hodak, E; Lotem, M; Merims, S; Ollech, A; Popovtzer, A; Stemmer, SM1
Okano, S1
Lim, SY; Menzies, AM; Rizos, H1

Reviews

4 review(s) available for niacinamide and plx4032

ArticleYear
Mechanism and consequences of RAF kinase activation by small-molecule inhibitors.
    British journal of cancer, 2014, Aug-12, Volume: 111, Issue:4

    Topics: Animals; Antineoplastic Agents; Carcinoma, Squamous Cell; Enzyme Activation; Humans; Indoles; Melanoma; Niacinamide; Phenylurea Compounds; Protein Multimerization; Protein Processing, Post-Translational; raf Kinases; Sorafenib; Sulfonamides; Vemurafenib

2014
[Kinase inhibitors and their resistance].
    Nihon rinsho. Japanese journal of clinical medicine, 2015, Volume: 73, Issue:8

    Topics: Antibodies, Monoclonal, Humanized; Benzamides; Biomarkers, Tumor; Crizotinib; Drug Discovery; Drug Resistance, Neoplasm; ErbB Receptors; Gefitinib; Humans; Imatinib Mesylate; Indoles; Molecular Targeted Therapy; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein Kinases; Pyrazoles; Pyridines; Pyrimidines; Quinazolines; Signal Transduction; Sorafenib; Sulfonamides; Trastuzumab; Vemurafenib

2015
[New molecular target therapy for thyroid neoplasms and malignant melanomas].
    Nihon Jibiinkoka Gakkai kaiho, 2015, Volume: 118, Issue:11

    Topics: Antibodies, Monoclonal; Antineoplastic Agents; Clinical Trials as Topic; Humans; Indoles; Ipilimumab; Melanoma; Molecular Targeted Therapy; Niacinamide; Nivolumab; Phenylurea Compounds; Quinolines; Skin Neoplasms; Sorafenib; Sulfonamides; Thyroid Neoplasms; Vemurafenib

2015
Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma.
    Cancer, 2017, 06-01, Volume: 123, Issue:S11

    Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; CTLA-4 Antigen; Drug Administration Schedule; Drug Resistance, Neoplasm; Humans; Immunotherapy; Indoles; Ipilimumab; MAP Kinase Kinase 1; Melanoma; Molecular Targeted Therapy; Niacinamide; Nivolumab; Phenylurea Compounds; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Programmed Cell Death 1 Receptor; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-akt; Pyrimidines; Quinazolines; Signal Transduction; Skin Neoplasms; Sorafenib; Sulfonamides; Vemurafenib

2017

Other Studies

12 other study(ies) available for niacinamide and plx4032

ArticleYear
Oncogenic RAF: a brief history of time.
    Pigment cell & melanoma research, 2010, Volume: 23, Issue:6

    Topics: Benzenesulfonates; Drug Screening Assays, Antitumor; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Humans; Indoles; Melanoma; Mutation; Niacinamide; Phenylurea Compounds; Proto-Oncogene Proteins B-raf; Pyridines; Sorafenib; Sulfonamides; Time Factors; Vemurafenib

2010
Fibroblast growth factor receptors as therapeutic targets in human melanoma: synergism with BRAF inhibition.
    The Journal of investigative dermatology, 2011, Volume: 131, Issue:10

    Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Benzenesulfonates; Cell Line, Tumor; Dacarbazine; Drug Screening Assays, Antitumor; Genes, Dominant; Humans; Indoles; Melanocytes; Melanoma; Niacinamide; Phenylurea Compounds; Prognosis; Proto-Oncogene Proteins B-raf; Pyridines; Receptors, Fibroblast Growth Factor; Signal Transduction; Skin Neoplasms; Sorafenib; Sulfonamides; Vemurafenib

2011
RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors.
    Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2012, Jan-20, Volume: 30, Issue:3

    Topics: Adult; Aged; Aged, 80 and over; Benzenesulfonates; Carcinoma, Squamous Cell; Female; Gene Expression Regulation, Neoplastic; Genotype; Humans; Indoles; Male; Mass Spectrometry; Middle Aged; Mitogen-Activated Protein Kinase Kinases; Mutation; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Pyridines; Skin Neoplasms; Sorafenib; Sulfonamides; Vemurafenib

2012
Major clinical response to a BRAF inhibitor in a patient with a BRAF L597R-mutated melanoma.
    Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2013, Jul-01, Volume: 31, Issue:19

    Topics: Aged; Antineoplastic Agents; Arginine; Back; Cell Survival; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Female; Humans; Imidazoles; Indoles; Leucine; Lung Neoplasms; MAP Kinase Signaling System; Melanoma; Niacinamide; Oximes; Phenylurea Compounds; Point Mutation; Proto-Oncogene Proteins B-raf; Skin Neoplasms; Sorafenib; Sulfonamides; Vemurafenib

2013
Recurrent BRAF kinase fusions in melanocytic tumors offer an opportunity for targeted therapy.
    Pigment cell & melanoma research, 2013, Volume: 26, Issue:6

    Topics: Adolescent; Adult; Child, Preschool; Enzyme Activation; Female; Gene Rearrangement; Humans; Indoles; Male; MAP Kinase Signaling System; Melanocytes; Melanoma; Middle Aged; Molecular Targeted Therapy; Nevus, Epithelioid and Spindle Cell; Niacinamide; Oncogene Proteins, Fusion; Phenylurea Compounds; Proto-Oncogene Proteins B-raf; Skin Neoplasms; Sorafenib; Sulfonamides; Vemurafenib; Young Adult

2013
The MEK1/2 inhibitor AS703026 circumvents resistance to the BRAF inhibitor PLX4032 in human malignant melanoma cells.
    The American journal of the medical sciences, 2013, Volume: 346, Issue:6

    Topics: Antineoplastic Agents; Cell Death; Cell Line, Tumor; Drug Resistance, Neoplasm; Gene Knockdown Techniques; Humans; Indoles; MAP Kinase Kinase 1; MAP Kinase Kinase 2; Niacinamide; Protein Kinase Inhibitors; Proto-Oncogene Mas; Proto-Oncogene Proteins B-raf; RNA, Small Interfering; Sulfonamides; Vemurafenib

2013
Overman rearrangement and Pomeranz-Fritsch reaction for the synthesis of benzoazepinoisoquinolones to discover novel antitumor agents.
    European journal of medicinal chemistry, 2013, Volume: 70

    Topics: Antineoplastic Agents; Benzazepines; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Discovery; Drug Screening Assays, Antitumor; HCT116 Cells; Hep G2 Cells; Humans; Indoles; K562 Cells; Melanoma; Molecular Structure; Niacinamide; Phenylurea Compounds; Quinolones; Sorafenib; Structure-Activity Relationship; Sulfonamides; Vemurafenib

2013
Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition.
    Proceedings of the National Academy of Sciences of the United States of America, 2015, Apr-28, Volume: 112, Issue:17

    Topics: Cell Culture Techniques; Cell Line, Tumor; Cell Movement; Collagenases; Humans; Hydrogels; Indoles; Melanoma; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Sorafenib; Sulfonamides; Tissue Scaffolds; Vemurafenib

2015
Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts.
    Journal of translational medicine, 2015, Jun-13, Volume: 13

    Topics: Animals; Antibodies, Neoplasm; Cell Line, Tumor; Cell Proliferation; Cellular Apoptosis Susceptibility Protein; Colorectal Neoplasms; Extracellular Signal-Regulated MAP Kinases; Humans; Indoles; Lapatinib; Male; Melanoma; Mice, Inbred NOD; Mice, SCID; Niacinamide; Phenylurea Compounds; Phosphorylation; Pyrroles; Quinazolines; Sorafenib; Sulfonamides; Sunitinib; Vemurafenib; Xenograft Model Antitumor Assays

2015
Limited Proteolysis Combined with Stable Isotope Labeling Reveals Conformational Changes in Protein (Pseudo)kinases upon Binding Small Molecules.
    Journal of proteome research, 2015, Oct-02, Volume: 14, Issue:10

    Topics: Adenosine Triphosphate; Adenylyl Imidodiphosphate; Cell Line, Tumor; Cell Survival; Deuterium Exchange Measurement; Humans; Indoles; Isotope Labeling; MAP Kinase Signaling System; Mass Spectrometry; Molecular Dynamics Simulation; Mutation; Niacinamide; Peptides; Phenylurea Compounds; Phosphorylation; Protein Binding; Protein Kinase Inhibitors; Protein Kinases; Protein Structure, Secondary; Protein Structure, Tertiary; Proteolysis; Proteomics; Proto-Oncogene Proteins B-raf; Sorafenib; Sulfonamides; Trypsin; Vemurafenib

2015
B-Raf Inhibition in the Clinic: Present and Future.
    Annual review of medicine, 2016, Volume: 67

    Topics: Antineoplastic Agents; Colonic Neoplasms; Drug Resistance, Neoplasm; Humans; Imidazoles; Indoles; MAP Kinase Signaling System; Melanoma; Mitogen-Activated Protein Kinase Kinases; Niacinamide; Oximes; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Sorafenib; Sulfonamides; Thyroid Neoplasms; Vemurafenib

2016
Widespread morbilliform rash due to sorafenib or vemurafenib treatment for advanced cancer; experience of a tertiary dermato-oncology clinic.
    International journal of dermatology, 2016, Volume: 55, Issue:4

    Topics: Aged; Antineoplastic Agents; Drug Eruptions; Exanthema; Female; Humans; Indoles; Male; Middle Aged; Neoplasms; Niacinamide; Phenylurea Compounds; Sorafenib; Steroids; Sulfonamides; Vemurafenib

2016