niacinamide has been researched along with nicotinamide-beta-riboside in 212 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 11 (5.19) | 18.7374 |
1990's | 7 (3.30) | 18.2507 |
2000's | 25 (11.79) | 29.6817 |
2010's | 76 (35.85) | 24.3611 |
2020's | 93 (43.87) | 2.80 |
Authors | Studies |
---|---|
Bull, HG; Cordes, EH; Ferraz, JP | 1 |
Boland, MP; Davies, LC; Friedlos, F; Jarman, M; Knox, RJ | 1 |
Abrahamson, JA; Biggs, PJ; Friedlos, F; Knox, RJ | 1 |
Alvarez, E; Robins, RK; Saunders, PP; Spindler, CD; Tan, MT | 1 |
Cynamon, MH; Godek, CP | 1 |
Niven, DF; O'Reilly, T | 3 |
Robins, RK; Saunders, PP; Spindler, CD; Tan, MT | 1 |
Durand, P; Langrené, S; Le Goffic, F; Sicsic, S | 1 |
Anderson, BM; Imai, T | 1 |
Kasărov, LB; Moat, AG | 1 |
Foster, J; Liu, G; Manlapaz-Ramos, P; Olivera, BM | 1 |
Shriver, JW; Sykes, BD | 1 |
Campbell, W; Dwivedi, U; Lindqvist, Y; Lu, G; Schneider, G | 1 |
Bzowska, A; Kulikowska, E; Shugar, D; Wielgus-Kutrowska, B; Wierzchowski, J | 1 |
Burke, PJ; Chen, S; Hobbs, SM; Jenkins, TC; Knox, RJ; Melton, RG | 1 |
Fiske, MJ; Green, BA; Herbert, M; Kemmer, G; Kraiss, A; Reidl, J; Reilly, TJ; Schlör, S; Schmidt-Brauns, J; Smith, A; Zlotnik, GW | 1 |
Kirihata, M; Ohta, T; Tanimori, S | 1 |
Dörner, H; Krohn, K; Zukowski, M | 1 |
Goldstein, BM; Jayaram, HN; Lesiak-Watanabe, K; Pankiewicz, KW; Watanabe, KA | 1 |
Herbert, M; Hilpert, AK; Kraiss, A; Reidl, J; Sauer, E; Smethurst, G | 1 |
BERNHEIMER, AW; CARLSON, AS; FREEMAN, EB; KELLNER, A | 1 |
KORNBERG, A; ROWEN, JW | 1 |
Bieganowski, P; Brenner, C | 1 |
Cappellacci, L; Franchetti, P; Pasqualini, M; Petrelli, R; Ricciutelli, M; Vita, P | 1 |
Ali, TH; Elzainy, TA | 1 |
Merdanovic, M; Reidl, J; Sauer, E | 1 |
Bergthorsson, U; Grose, JH; Khodaverdian, B; Roth, JR; Sterneckert, J; Xu, Y | 1 |
Gerlach, G; Reidl, J | 1 |
Boddy, AV; Edmondson, RJ; Jamieson, D; Knox, R; Leung, HY; Margetts, JP; Pridgeon, S; Wilson, K | 1 |
Cappellacci, L; Cimadamore, F; Franchetti, P; Magni, G; Orsomando, G; Petrelli, R; Scotti, S; Sorci, L | 1 |
Denu, JM | 1 |
Belenky, P; Bogan, KL; Brenner, C; McClure, JM; Racette, FG; Smith, JS | 1 |
Elliott, P; Rex, TS; Rostami, A; Shindler, KS; Ventura, E | 1 |
Cormack, BP; Ma, B; Pan, SJ; Zupancic, ML | 1 |
Chan, NY; Sauve, AA; Yang, T | 1 |
Sauve, AA | 1 |
Belenky, PA; Brenner, C; Moga, TG | 1 |
Bogan, KL; Brenner, C | 1 |
Amigues, EJ; Armstrong, E; Dvorakova, M; Huang, M; Migaud, ME | 1 |
Kato, M; Lin, SJ; Lu, SP | 1 |
Belenky, P; Bogan, KL; Brenner, C; Burant, CF; Evans, C; Kennedy, R; Song, P | 1 |
Andreux, PA; Auwerx, J; Cantó, C; Cen, Y; Cettour-Rose, P; Fernandez-Marcos, PJ; Gademann, K; Houtkooper, RH; Oosterveer, MH; Pirinen, E; Rinsch, C; Sauve, AA; Schoonjans, K; Yamamoto, H; Youn, DY | 1 |
Gong, B; Ho, L; Knable, L; Ono, K; Pan, Y; Pasinetti, GM; Sastre, M; Sauve, AA; Vempati, P; Wang, J; Zhao, W | 1 |
Chi, Y; Sauve, AA | 1 |
Auranen, M; Auwerx, J; Carroll, CJ; Euro, L; Forsström, S; Khan, NA; Paetau, I; Pasila, L; Pirinen, E; Suomalainen, A; Velagapudi, V | 1 |
Kato, M; Lin, SJ | 1 |
Auwerx, J; Cerutti, R; Dantzer, F; Lamperti, C; Leoni, V; Li, W; Marchet, S; Pirinen, E; Sauve, AA; Schon, EA; Viscomi, C; Zeviani, M | 1 |
Chrzanowska-Lightowlers, ZM; Lightowlers, RN | 1 |
Boros, EE; Carter, LH; Porter, DJ; Preugschat, F; Shewchuk, LM; Stewart, EL | 1 |
Guskov, A; Jaehme, M; Slotboom, DJ | 1 |
Brown, KD; Harkcom, W; Huang, JY; Jaffrey, SR; Li, W; Maqsood, S; Pan, Y; Sauve, A; Verdin, E | 1 |
Harrington, M | 1 |
Berlinguer-Palmini, R; Cavone, L; Chiarugi, A; Felici, R; Lapucci, A; Pratesi, S | 1 |
Hong, YS; Jun, W; Lee, HJ; Yang, SJ | 1 |
Dölle, C; Khodorkovskiy, M; Kulikova, V; Migaud, ME; Nerinovski, K; Niere, M; Nikiforov, A; Redpath, P; Shabalin, K; Yakimov, A; Ziegler, M | 1 |
Auwerx, J; Cantó, C; Fomitchova, A; Gariani, K; Kim, B; Koo, SI; Ku, CS; Lee, JY; Lemos, V; Menzies, KJ; Moullan, N; Park, YK; Perino, A; Pham, TX; Piersigilli, A; Ropelle, ER; Ryu, D; Sauve, AA; Schoonjans, K; Wang, X; Wegner, CJ; Yang, Y; Zhang, H | 1 |
Andrews, NC; Barrientos, T; Mao, L; Rockman, HA; Sauve, AA; Xu, W | 1 |
Bray, A; Han, K; Huffstutler, RD; Kwarteng-Siaw, M; Li, J; Okoli, TC; Pelletier, M; Sack, MN; Sauve, AA; Siegel, RM; Traba, J; Waclawiw, MA | 1 |
Bianchi, G; Bruzzone, S; Emionite, L; Magnone, M; Nahimana, A; Nencioni, A; Raffaelli, N; Raffaghello, L; Sociali, G; Sturla, L; Vigliarolo, T; Zamporlini, F | 1 |
Brenner, C; Migaud, ME; Redpath, P; Trammell, SA; Yu, L | 1 |
Aebersold, R; Auwerx, J; D'Amico, D; Gariani, K; Luan, P; Lutolf, MP; Menzies, KJ; Ropelle, ER; Ryu, D; Schoonjans, K; Wang, X; Wu, Y; Zhang, H | 1 |
Brenner, C; Chadda, A; Coppey, LJ; Holmes, A; Kardon, RH; Obrosov, A; Trammell, SA; Weidemann, BJ; Yorek, MA; Yorek, MS | 1 |
Camacho-Pereira, J; Chini, CCS; Chini, EN; Escande, C; Galina, A; Nin, V; Puranik, AS; Reid, JM; Schoon, RA; Tarragó, MG; Warner, GM | 1 |
Avelar-González, FJ; Guerrero-Barrera, AL; Jacques, M; Labrie, J; Loera-Muro, A; Oropeza-Navarro, R; Tremblay, YD | 1 |
Gioris, IS; Kourtzidis, IA; Kyparos, A; Margaritelis, NV; Nikolaidis, MG; Paschalis, V; Stoupas, AT; Taitzoglou, I; Tsantarliotou, M; Veskoukis, AS; Vrabas, IS | 1 |
Baur, JA; Chellappa, K; Davila, A; Davis, JG; Dellinger, RW; Frederick, DW; Gosai, SJ; Gregory, BD; Khurana, TS; Liu, L; Loro, E; Migaud, ME; Mourkioti, F; Nakamaru-Ogiso, E; Quinn, WJ; Rabinowitz, JD; Redpath, P; Silverman, IM; Tichy, ED | 1 |
Abel, ED; Brenner, C; Dellinger, RW; Jaksch, F; Li, Z; Migaud, ME; Redpath, P; Schmidt, MS; Trammell, SA; Weidemann, BJ | 1 |
Auwerx, J; Boutant, M; Brenner, C; Canela, N; Cantó, C; Joffraud, M; Kulkarni, SS; Migaud, ME; Ras, R; Ratajczak, J; Redpath, P; Rodrigues, M; Trammell, SA; Yanes, O | 1 |
Agarwal, B; Baur, JA; Chellappa, K; Davis, JG; Dellinger, RW; Moffitt, A; Mukherjee, S; Ndungu, J | 1 |
Amici, A; Mazzola, F; Mozzon, M; Orsomando, G; Raffaelli, N; Ruggieri, S; Ummarino, S; Zamporlini, F | 1 |
Arola, L; Hegeman, MA; Keijer, J; Shi, W; Suarez, M; Swarts, H; Tang, J; van Dartel, DAM; van der Hee, B | 1 |
Brenner, C; Hamity, MV; Hammond, DL; Schmidt, MS; Walder, RY; White, SR | 1 |
Brenner, C; Brugg, B; Duplus, E; Jacotot, E; Li, Z; Mericskay, M; Orset, C; Schmidt, MS; Vaur, P; Vivien, D | 1 |
Bedlack, R | 1 |
Benner, SA; Kim, HJ | 1 |
Auwerx, J; Beck, JS; Counts, SE; D'Amico, D; Mouchiroud, L; Moullan, N; Potenza, F; Rietsch, S; Romani, M; Schmid, AW; Sorrentino, V; Zhang, H | 1 |
Airhart, SE; Anderson, GD; Nagana Gowda, GA; O'Brien, KD; Raftery, D; Risler, LJ; Shen, DD; Shireman, LM; Tian, R | 1 |
Baczkó, I; Blanc, J; Brenner, C; Breton, M; Decaux, JF; Deloux, R; Diguet, N; Garnier, A; Gouge, A; Gressette, M; Lavery, GG; Li, Z; Manoury, B; Mericskay, M; Mougenot, N; Piquereau, J; Tannous, C; Trammell, SAJ; Zoll, J | 1 |
Baur, JA; Imai, SI; Yoshino, J | 1 |
Sauve, AA; Zhang, N | 1 |
Goody, MF; Henry, CA | 1 |
Armstrong, ML; Chonchol, M; Denman, BA; Martens, CR; Mazzo, MR; McQueen, MB; Reisdorph, N; Seals, DR | 1 |
Cui, J; Fan, R; Huang, Y; Qian, X; Ren, F; Wang, Q; Wei, L; Xiong, X; Zhao, B | 1 |
Huang, Y; Jiang, R; Liang, B; Lin, X; Ling, W; Pang, N; Pei, L; Qiu, Y; Wan, T; Wang, S; Yang, L; Ye, M; Zhang, Z | 1 |
Cen, Y; Tran, A; Yokose, R | 1 |
Tian, R; Walker, MA | 1 |
Fan, GC; Hong, G; Lu, Z; Ni, R; Peng, T; Wang, G; Zhang, L; Zheng, D | 1 |
Baden, P; Bandmann, O; De Cicco, S; Deleidi, M; Di Napoli, G; Gasser, T; Giunta, I; Heimrich, B; Ivanyuk, D; Keatinge, M; Nestel, S; Panagiotakopoulou, V; Pruszak, J; Sanchez-Martinez, A; Schöndorf, DC; Schwarz, LK; Whitworth, AJ; Yu, C | 1 |
Baur, JA; Chellappa, K; Davila, A; Liu, L; Migaud, ME; Nakamaru-Ogiso, E; Paolella, LM; Rabinowitz, JD; Redpath, P; Zhang, Z | 1 |
Brenner, C; Christensen, B; Dollerup, OL; Jessen, N; Møller, N; Ringgaard, S; Schmidt, MS; Stødkilde-Jørgensen, H; Sulek, K; Svart, M; Treebak, JT | 1 |
Dolopikou, CF; Kourtzidis, IA; Kyparos, A; Margaritelis, NV; Nikolaidis, MG; Paschalis, V; Theodorou, AA; Tsantarliotou, MP; Tsiftsis, AN; Veskoukis, AS; Vrabas, IS; Zervos, IA | 1 |
Asnani-Kishnani, M; Bonet, ML; Palou, A; Ribot, J; Rodríguez, AM; Serrano, A | 1 |
Braga, RR; Cintra, DE; Crisol, BM; da Silva, ASR; Lenhare, L; Moura, LP; Pauli, JR; Ropelle, ER; Silva, VRR; Veiga, CB | 1 |
Brenner, C; Cambronne, XA; Cohen, MS; Goodman, RH; Liu, HW; Migaud, ME; Schmidt, MS; Smith, CB | 1 |
Bu, P; Li, N; Liu, X; Yang, J; Zhang, J; Zhang, Q | 1 |
Gao, Y; Lu, YB; Wang, Y; Wei, TF; Xie, X; Zeng, M; Zhang, WP | 1 |
Yamaguchi, S; Yoshino, J | 1 |
Brenner, C; Chadda, A; Ear, PH; Gumusoglu, SB; Kadel, J; Malicoat, J; Migaud, ME; Moore, MM; Schmidt, MS; Stevens, HE; Vogeler, S | 1 |
Dolopikou, CF; Koidou, I; Kourtzidis, IA; Kyparos, A; Margaritelis, NV; Nikolaidis, MG; Paschalis, V; Theodorou, AA; Vrabas, IS | 1 |
Bénet, S; Campos-Giménez, E; Meschiari, M; Prencipe, FP; Redeuil, K; Vulcano, J | 1 |
Gonchar, AI; Ivkin, DY; Karabak, IA; Karev, VE; Kornyushin, OV; Leonova, YV; Pechnikova, NA; Toropova, YG; Zelinskaya, IA; Zhuravsky, SG | 1 |
Wan, Y; Yang, D | 1 |
Badalzadeh, R; Hosseini, L; Mahmoudi, J; Vafaee, MS | 1 |
Harlan, BA; Killoy, KM; Pehar, M; Vargas, MR | 1 |
Auwerx, J; Campos, V; Canto, C; Cheng, WC; Cherix, S; Coukos, G; Deplancke, B; Duchosal, MA; Ehrbar, M; Giger, S; Girotra, M; Ho, PC; Li, TY; Lutolf, MP; Nahimana, A; Naveiras, O; Nikitin, G; Oggier, A; Petrova, TV; Pirinen, E; Ragusa, S; Rainer, PY; Ratajczak, J; Rojas-Sutterlin, S; Romero, P; Ryu, D; Semilietof, A; Sizzano, F; Stefanidis, E; Tauzin, L; Trachsel, V; Tratwal, J; Vanhecke, D; Vannini, N; Yersin, Y; Zhang, L | 1 |
Guarente, L; Igarashi, M; Jaksch, F; Kadowaki, T; Miura, M; Williams, E; Yamauchi, T | 1 |
Huang, Y; Jiang, R; Jiang, X; Li, X; Ling, W; Pang, N; Pei, L; Qiu, Y; Wan, T; Wang, S; Yang, H; Yang, L; Ye, M; Zhang, Z; Zhou, Y | 1 |
Garten, A; Grahnert, A; Hauschildt, S; Müller, G; Petin, K; Sack, U; Weiss, R | 1 |
Bae, M; Hu, S; Kang, H; Kim, MB; Lee, JY; Lee, Y; Park, YK; Pham, TX | 1 |
Brockman, J; Cao, T; Fan, GC; Ni, R; Peng, T; Wang, G; Zhang, L; Zhang, Y; Zheng, D; Zheng, M; Zhong, H | 1 |
Brenner, C; Conze, D; Kruger, CL | 1 |
Christensen, B; Dollerup, OL; Gillum, MP; Hartmann, B; Holst, JJ; Jessen, N; Møller, N; Trammell, SAJ; Treebak, JT | 1 |
Akerman, I; Brenner, C; Burley, CV; Cartwright, DM; Doig, CL; Elhassan, YS; Fletcher, RS; Garten, A; Jenkinson, N; Kluckova, K; Lai, YC; Lavery, GG; Lucas, SJE; Manolopoulos, KN; Nightingale, P; Oakey, L; Philp, A; Schmidt, MS; Seabright, A; Tennant, DA; Wallis, GA; Wilson, M | 1 |
Lee, HJ; Yang, SJ | 1 |
Baptista, IL; Braga, RR; Cintra, DE; Cordeiro, AV; Crisol, BM; da Silva, ASR; Gaspar, RC; Lenhare, L; Moura, LP; Muñoz, VR; Pauli, JR; Ropelle, ER; Veiga, CB | 1 |
Boutant, M; Canto, C; Cercillieux, A; Giner, MP; Giroud-Gerbetant, J; Joffraud, M; Kulkarni, SS; Moco, S; Ratajczak, J; Sambeat, A; Sanchez-Garcia, JL; Valera-Alberni, M; Valsesia, A | 1 |
Bekkenkamp-Grovenstein, M; de Boer, VCJ; Doncheva, A; Hegeman, MA; Keijer, J; Shi, W | 1 |
Compernolle, V; Delabie, W; Devloo, R; Feys, HB; Maes, W; Van den Hauwe, MR; Vanhoorelbeke, K | 1 |
Agerholm, M; Altıntaş, A; Barrès, R; Chubanava, S; Dollerup, OL; Høyer, KF; Jessen, N; Larsen, S; Lavery, GG; Møller, AB; Prats, C; Ringgaard, S; Stødkilde-Jørgensen, H; Søndergård, SD; Treebak, JT | 1 |
Bartova, S; Canto, C; Cercillieux, A; Giner, MP; Giroud-Gerbetant, J; Houtkooper, RH; Joffraud, M; Makarov, MV; Migaud, ME; Moco, S; Sánchez-García, JL; Zapata-Pérez, R | 1 |
Horwitz, ME; Islam, P | 1 |
Gao, M; Jiang, Y; Liang, H; Liu, Y; Wang, Z; Xue, M | 1 |
Ayoub, MB; Dulac, M; Gouspillou, G; Leduc-Gaudet, JP; Reynaud, O | 1 |
Braidy, N; Liu, Y | 2 |
Chen, WX; Feng, H; Guo, C; Jia, ZC; Li, CC; Li, MX; Liu, X; Tang, XQ; Wang, J; Xia, M; Yin, Y | 1 |
Asnani-Kishnani, M; Astier, J; Bonet, ML; Couturier, C; Landrier, JF; Palou, A; Ribot, J; Serrano, A | 1 |
Deterding, LJ; Fan, W; Kabanov, AV; Lee, E; Li, JL; Li, L; Li, W; Li, X; Lih, FB; Lim, C; Liu, J; Locasale, JW; Makarov, MV; Migaud, ME; Randall, TA; Shats, I; Sokolsky, M; Williams, JG; Wu, X; Xu, X | 1 |
Du, Z; Gong, S; Han, S; Liu, K | 1 |
Hayat, F; Migaud, ME | 1 |
Aarts, SABM; Auwerx, J; Connell, NJ; de Wit, VHW; Elfrink, HL; Havekes, B; Hoeks, J; Houtkooper, RH; Lindeboom, L; Lutgens, E; Mevenkamp, J; Moonen, MPB; Phielix, E; Remie, CME; Roumans, KHM; Schomakers, BV; Schrauwen, P; Schrauwen-Hinderling, VB; van de Weijer, T; Zapata-Pérez, R | 1 |
Chronister, WD; Fragola, G; Li, Z; Mabb, AM; Mao, H; McConnell, MJ; Niehaus, JK; Simon, JM; Taylor-Blake, B; Yuan, H; Zylka, MJ | 1 |
Adiels, M; Arif, M; Benfeitas, R; Bergh, PO; Bidkhori, G; Bjornson, E; Borén, J; Bosley, J; Juszczak, K; Kim, JT; Kim, W; Lovric, A; Mardinoglu, A; Marschall, HU; Nielsen, J; Ozcan, M; Ståhlman, M; Taskinen, MR; Tebani, A; Turkez, H; Uhlén, M; Zhang, C | 1 |
Abdullah, L; Crawford, F; Cseresznye, A; Darcey, T; Evans, JE; Joshi, U; Keegan, AP; Klimas, N; Mouzon, B; Mullan, M; Oberlin, S; Ojo, J; Paris, D; Pearson, A; Saltiel, N; Sullivan, K | 1 |
Campagna, R; Chlopicki, S; Kuś, K; Kutryb-Zając, B; Mateuszuk, Ł; Smolenski, RT; Słominska, EM | 1 |
Brenner, C; Fluharty, NT | 1 |
Blum, C; Gibson-Corley, KN; Hamity, MV; Hammond, DL; White, SR | 1 |
Anton, SD; Christou, DD; Custodero, C; Jeon, YK; Leeuwenburgh, C; Mankowski, RT; McDermott, MM; Saini, SK; Shin, MJ | 1 |
Moore, MP; Mucinski, JM | 1 |
Jovanović, N; Mehmel, M; Spitz, U | 1 |
Brenner, C; Cherepanov, SM; Furuhara, K; Gerasimenko, M; Higashida, H; Ishihara, K; Lopatina, O; Salmina, AB; Shabalova, AA; Tsuji, C; Yokoyama, S | 1 |
Choi, JY; Kang, BE; Ryu, D; Stein, S | 1 |
Bazhin, AA; Budin, G; De Marchi, U; Goun, EA; Hermant, A; Maric, T; Sambiagio, N; Sinisi, R | 1 |
Airhart, S; Liu, Y; O'Brien, KD; Qiu, Y; Stempien-Otero, A; Tian, R; Wang, DD; Zhou, B | 1 |
Dellinger, R; Guarente, LP; Parikh, SM; Rhee, EP; Simic, P; Vela Parada, XF | 1 |
Arizono, I; Fujita, N; Kitaoka, Y; Sase, K; Takagi, H; Tsukahara, C | 1 |
Boatright, JH; Brenner, C; Chrenek, MA; Girardot, PE; Henneman, NF; Li, Y; Nickerson, JM; Sellers, JT; Wang, J; Zhang, X | 1 |
Xia, J; Xu, B; Zhao, N | 1 |
Alter, BP; Bohr, VA; Demarest, TG; Giri, N; Gong, Y; Harrington, L; Liu, Y; Savage, SA; Stock, AJ; Sun, C; Wang, K; Yang, B | 1 |
Kim, SH; Park, KH | 1 |
Alhammad, YMO; Brenner, C; Cohen, MS; Fehr, AR; Heer, CD; Perlman, S; Sanderson, DJ; Schmidt, MS; Trammell, SAJ; Voth, LS | 1 |
Assumpção, JAF; Carraro, CC; Caumo, W; da Rosa Araujo, AS; da Silva, LS; de Castro, JM; Stein, DJ; Toledo, RS; Torres, ILS | 1 |
Breaker, RR; Corey, L; Higgs, G; Malkowski, SN; Panchapakesan, SSS | 1 |
Becherer, JD; Frederick, DW; Kramer, HF; McDougal, AV; Nuzzo, A; Preugschat, F; Semenas, M; Sévin, DC; Stewart, EL; Ulrich, JC; Vappiani, J | 1 |
Allagnat, F; Auwerx, J; Cippà, P; Cohen, C; de Seigneux, S; Faivre, A; Feraille, E; Heckenmeyer, C; Katsyuba, E; Legouis, D; Lindenmeyer, M; Longchamp, A; Mottis, A; Naesens, M; Rajaram, RD; Rutkowski, JM; Verissimo, T | 1 |
Alandes, S; Alcácer, J; Banacloche, S; Benlloch, M; Colomer, N; Coronado, JA; Drehmer, E; Estrela, JM; Jihad-Jebbar, A; López-Blanch, R; Marchio, P; Obrador, E; Rivera, P; Salvador, R; Vallés, SL | 1 |
Diani-Moore, S; Marques Pedro, T; Rifkind, AB | 1 |
Ashcroft, SP; Dansereau, LC; Elhassan, YS; Joanisse, S; Koay, YC; Lavery, GG; O'Sullivan, JF; Philp, A; Philp, AM; Quek, LE; Stocks, B; Wallis, GA | 1 |
Gonzalez, JM; Jackson, AR; Xu, X | 1 |
Auwerx, J; Gariani, K; Hoeks, J; Jörgensen, JA; Moonen, MPB; Nascimento, EBM; Remie, CME; Schaart, G; Schrauwen, P; van Marken Lichtenbelt, WD | 1 |
Khodorkovskiy, M; Kropotov, A; Kulikova, V; Migaud, ME; Nerinovski, K; Nikiforov, A; Solovjeva, L; Sudnitsyna, J; Svetlova, M; Yakimov, A; Ziegler, M | 1 |
De-Souza, EA; Ferreira, LSS | 1 |
Baur, JA; Chellappa, K; Chu, Q; Hugo, MM; Mo, J; Mukherjee, S; Paolella, LM; Perry, CE; Tong, Q; Toth, J | 1 |
Babbar, M; Bohr, VA; Croteau, DL; Dan, X; Demarest, T; Hou, Y; Kimura, R; Krishnamurthy, S; Lee, JH; Mattson, MP; McDevitt, R; Wechter, N; Yang, B; Zhang, S; Zhang, Y | 1 |
Bitto, A; Bogue, M; Bucala, R; Cortopassi, G; Fernandez, E; Flurkey, K; Harrison, DE; Javors, MA; Kavanagh, K; Kumar, N; Leng, L; Lopez-Cruzan, M; Macchiarini, F; Markewych, A; Miller, RA; Nelson, JF; Reifsnyder, P; Rosenthal, N; Salmon, A; Sindler, AL; Stearns, TM; Strong, R | 1 |
Dohra, H; Idogaki, H; Iijima, K; Nishikawa, K; Sugiyama, K; Tokimoto, Y; Yoshida, N; Yoshino, M | 1 |
Kang, H; Lee, JY; Park, YK | 1 |
Brenner, C; Hattori, T; Heer, CD; Higashida, H; Hori, O; Ishii, H; Nguyen, DT; O'Meally, D; Okamoto, H; Roboon, J; Takarada-Iemata, M; Yamamoto, Y | 1 |
Altamirano, F; Elnwasany, A; Gillette, TG; Hill, JA; Jiang, N; Kass, DA; Lavandero, S; Lee, DI; Schiattarella, GG; Szweda, LI; Szweda, PA; Tong, D; Verdin, E; Yoo, H | 1 |
Cao, B; Chen, X; Das Gupta, K; Deshpande, N; Fulton, M; Hatwell-Humble, J; Heazlewood, CK; Heazlewood, SY; Kapetanovic, R; Kraus, F; Li, J; Naval-Sanchez, M; Nefzger, CM; Nguyen, Q; Nilsson, SK; Parton, RG; Pham, T; Polo, JM; Rae, J; Ryan, MT; Schröder, J; Sun, X; Sun, YBY; Sweet, MJ; Williams, B; Yari, H | 1 |
Pan, B; Qie, S; Sun, P | 1 |
Andersen, CB; Egstrand, S; Lewin, E; Mace, ML; Morevati, M; Nordholm, A; Olgaard, K; Salmani, R | 1 |
Ahmed, MS; Attramadal, H; Aukrust, P; Bergersen, LH; Esbensen, QY; Halvorsen, B; Lauritzen, KH; Olsen, MB; Rinholm, JE; Sverkeli, LJ; Yang, K; Yndestad, A; Ziegler, M | 1 |
Hayat, F; Migaud, ME; Sverkeli, LJ; Ziegler, M | 1 |
Berry, CE; Cartwright, DM; Doig, CL; Fletcher, RS; Garten, A; Heaselgrave, SR; Heising, S; Hodson, DJ; Larner, DP; Lavery, GG; Ludwig, C; Nasteska, D; Oakey, LA | 1 |
Coene, KLM; Engelke, UFH; Janssen, AJWM; Roeleveld, N; Ter Heine, R; Tinnevelt, GH; van de Warrenburg, BPC; van Gerven, MHJC; van Os, NJH; Veenhuis, SJG; Weemaes, CMR; Wevers, RA; Willemsen, MAAP | 1 |
Feng, J; Gong, J; Lin, X; Liu, J; Ma, S; Nie, S; Tang, Y; Wang, L | 1 |
Podyacheva, E; Toropova, Y | 1 |
Larrick, JW; Mendelsohn, AR | 1 |
Hayat, F; Hikosaka, K; Iqbal, T; Ishihara, K; Izumi, H; Karim, M; Migaud, ME; Mori, H; Nakagawa, T; Nitta, Y; Palikhe, S; Sato, A; Yaku, K; Yoshida, T | 1 |
Chan, PPM; Chiu, VSM; Kam, AKW; Ko, MWL; Lai, GWK; Leung, CKS; Ren, ST; Wan, KHN; Yiu, CKF; Yu, MCY | 1 |
Brakedal, B; Brekke, N; Craven, AR; Diab, J; Dölle, C; Eidelberg, D; Grüner, R; Haugarvoll, K; Ma, Y; Nido, GS; Peng, S; Riemer, F; Schwarzlmüller, T; Skeie, GO; Skjeie, V; Sverkeli, L; Tysnes, OB; Tzoulis, C; Varhaug, K; Ziegler, M | 1 |
Gao, Y; Hu, X; Li, H; Li, M; Liang, B; Lu, Q; Xing, D; Ye, T; Yuan, Y; Zhang, Y; Zou, L | 1 |
Cao, J; Deng, C; Deng, Q; Ding, X; Guo, C; Liu, Q; Qiu, L; Tian, B; Ye, C; Zhang, X; Zhang, Y | 1 |
Cheng, YH; Jiang, YF; Luo, X; Qu, WS; Wang, W; Wei, XJ; Xu, Z; Yuan, Y; Zhao, JH; Zong, WF | 1 |
Chen, Z; Dong, H; Fang, J; Mao, S; Shi, H; Su, K; Wu, H; Xing, Y; Yu, D; Zhang, J | 1 |
Bonet, ML; Palou, A; Ribot, J; Serrano, A | 1 |
Bormann, MK; Cohen, BM; Healy, RA; Lee, Y; Ryu, WI; Shen, M; Sonntag, KC | 1 |
Cantó, C; Ciarlo, E; Giner, MP; Giroud-Gerbetant, J; Hayat, F; Joffraud, M; Migaud, ME; Moco, S; Rumpler, M; Sanchez-Garcia, JL | 1 |
Armenian, SH; Baur, J; Bhandari, R; Dedio, A; Guzman, T; Hampton, I; Lee, K; Lin, K; Lindenfeld, L; Manoukian, S; McCormack, S; Mostoufi-Moab, S; Ness, K; Putt, M; Song, M; Wade, K | 1 |
Alcocer, HM; Gonzalez, JM; Gravely, ME; Jackson, AR; Xu, X | 1 |
Canto, C; Cercillieux, A; Ciarlo, E | 1 |
Baur, JA; Butic, A; Huang, J; Morrow, R; Perry, C; Schaefer, PM; Tan, W; Wallace, DC; Yardeni, T | 1 |
Billeskov, TB; Chubanava, S; Dalbram, E; Damgaard, MV; Dellinger, RW; Dollerup, OL; Farup, J; Jensen, JB; Jessen, N; Moritz, T; Møller, AB; Møller, N; Ringgaard, S; Treebak, JT; Trošt, K | 1 |
Borrelli, M; Kahn, B; Libby, T | 1 |
Jungwirth, J; Schernthaner, EM; Steinbrücker, K; Tiefenthaler, E; Wortmann, SB | 1 |
Cen, Y; Donu, D; Sharma, C | 1 |
Antipova, M; Gambaryan, S; Khodorkovskiy, M; Kropotov, A; Kulikova, V; Migaud, ME; Nerinovski, K; Nikiforov, A; Plusnina, A; Solovjeva, L; Sudnitsyna, J; Svetlova, M; Yakimov, A; Ziegler, M | 1 |
Goncharova, I; Martynov, M; Mukhametdinova, D; N Yu, N; Osipova, S; Podyacheva, E; Sviridov, E; Toropova, Y; V A, V; Zelinskaya, I | 1 |
Bazhin, A; Cantó, C; Coukos, G; Giordano Attianese, GMP; Goun, E; Irving, M; Joffraud, M; Khodakivskyi, P; Maric, T; Mikhaylov, G; Solodnikova, E; Yevtodiyenko, A | 1 |
Hong, EJ; Jeong, SH; Kim, SY; Ko, JW; Kwun, HJ; Lee, SR; Mukae, M | 1 |
Costa, VP; Goulart Nacácio E Silva, S; Occhiutto, ML | 1 |
Cohen, MW; Costa, CJ; Goldberg, DC; Mellado, W; Willis, DE | 1 |
Huang, Z; Li, N; Song, F; Wang, X; Zhou, J | 1 |
Alegre, GFS; Pastore, GM | 1 |
Cen, Y; Curry, AM; Donu, D; Herrington, NB; Kellogg, GE; Rymarchyk, S | 1 |
Damgaard, MV; Treebak, JT | 1 |
Degano, M; Galasyn, GS; Kerin, F; Nyitray, MM; Parkin, DW; Patrone, M; Stockman, BJ | 1 |
Dong, H; Dong, Y; Huo, Q; Li, D; Li, W; Lu, L; Wang, X; Wu, X; Yue, T; Zhang, J; Zhao, Y | 1 |
Af Geijerstam, SA; Berven, H; Dölle, C; Haugarvoll, K; Kverneng, S; Sheard, E; Skeie, GO; Søgnen, M; Tzoulis, C | 1 |
23 review(s) available for niacinamide and nicotinamide-beta-riboside
Article | Year |
---|---|
Significance of V-factor dependency in the taxonomy of Haemophilus species and related organisms.
Topics: Actinobacillus; Haemophilus; NAD; Niacinamide; Nicotinamide Mononucleotide; Pasteurella; Pasteurellaceae; Pyridines; Pyridinium Compounds; Structure-Activity Relationship | 1990 |
NAD+ utilization in Pasteurellaceae: simplification of a complex pathway.
Topics: Animals; Bacterial Proteins; Humans; NAD; Niacinamide; Pasteurellaceae; Pyridinium Compounds; Repressor Proteins | 2006 |
NAD+ and vitamin B3: from metabolism to therapies.
Topics: Animals; Humans; NAD; Niacinamide; Pyridinium Compounds; Signal Transduction | 2008 |
Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition.
Topics: Animals; Caloric Restriction; Candida glabrata; Dietary Supplements; Dyslipidemias; Humans; NAD; Niacin; Niacinamide; Nutritional Requirements; Pyridinium Compounds | 2008 |
Nicotinamide riboside, a trace nutrient in foods, is a vitamin B3 with effects on energy metabolism and neuroprotection.
Topics: Alzheimer Disease; Animals; Brain; Disease Models, Animal; Energy Metabolism; Humans; Insulin Resistance; Intracellular Signaling Peptides and Proteins; Mitochondrial Turnover; Muscle, Skeletal; NAD; Neuroprotective Agents; Niacinamide; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds | 2013 |
NAD
Topics: Aging; Animals; Humans; NAD; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds | 2018 |
A need for NAD+ in muscle development, homeostasis, and aging.
Topics: Aging; Animals; Homeostasis; Humans; Intracellular Space; Muscle Development; Muscle Proteins; Muscle, Skeletal; Muscular Diseases; NAD; Niacinamide; Nicotinamide Phosphoribosyltransferase; Pyridinium Compounds; Regeneration; Signal Transduction | 2018 |
The pathophysiological importance and therapeutic potential of NAD' biosynthesis and mitochondrial sirtuin SIRT3 in age-associated diseases.
Topics: Aging; Animals; Humans; Hydrolases; Mice; Mitochondria; Niacinamide; Protein Processing, Post-Translational; Proteomics; Pyridinium Compounds; Sirtuin 3 | 2016 |
Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions.
Topics: Aging; Drug Discovery; Humans; Ischemia; Mitochondria; NAD; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds | 2019 |
Small-molecule nicotinamide for ex vivo expansion of umbilical cord blood.
Topics: Allografts; Cell Division; Cells, Cultured; Clinical Trials as Topic; Cord Blood Stem Cell Transplantation; Fetal Blood; Forecasting; Hematologic Neoplasms; Hematopoietic Stem Cells; Humans; Infant, Newborn; Multicenter Studies as Topic; Niacinamide; Pyridinium Compounds | 2019 |
NAD+ therapy in age-related degenerative disorders: A benefit/risk analysis.
Topics: Aging; Animals; Humans; Inflammation; Mice; NAD; Neurodegenerative Diseases; Niacinamide; Nicotinamide Mononucleotide; Oxidative Stress; Pyridinium Compounds; Rats; Risk Assessment | 2020 |
Nicotinamide riboside-A missing piece in the puzzle of exercise therapy for older adults?
Topics: Aged; Animals; Exercise Therapy; Humans; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds | 2020 |
Nicotinamide Riboside-The Current State of Research and Therapeutic Uses.
Topics: Aging; Animals; Betacoronavirus; Biological Availability; Cardiovascular Diseases; Coronavirus Infections; COVID-19; Dietary Supplements; Humans; Longevity; Metabolism; Neurodegenerative Diseases; Niacinamide; Pandemics; Pneumonia, Viral; Pyridinium Compounds; SARS-CoV-2 | 2020 |
Implications of NAD
Topics: ADP-ribosyl Cyclase; Aging; Animals; Biosynthetic Pathways; Carboxy-Lyases; Clinical Trials as Topic; Enzyme Inhibitors; Gastrointestinal Microbiome; Humans; NAD; Niacinamide; Nicotinamide Mononucleotide; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Probiotics; Pyridinium Compounds; Sirtuins; Translational Research, Biomedical | 2020 |
Can nicotinamide riboside protect against cognitive impairment?
Topics: Alzheimer Disease; Amyloid Precursor Protein Secretases; Animals; Aspartic Acid Endopeptidases; Brain; Cognitive Aging; Cognitive Dysfunction; Dietary Supplements; Disease Models, Animal; Humans; Mice; Niacinamide; Pyridinium Compounds | 2020 |
Nicotinamide Riboside for the Prevention and Treatment of Doxorubicin Cardiomyopathy. Opportunities and Prospects.
Topics: Animals; Antibiotics, Antineoplastic; Biomarkers; Cardiomyopathies; Cardiotonic Agents; Cardiotoxicity; Disease Management; Disease Models, Animal; Disease Susceptibility; Doxorubicin; Humans; Metabolic Networks and Pathways; NAD; Niacinamide; Oxidative Stress; Pyridinium Compounds; Signal Transduction; Sirtuins | 2021 |
Nicotinic Acid Riboside Regulates Nrf-2/P62-Related Oxidative Stress and Autophagy to Attenuate Doxorubicin-Induced Cardiomyocyte Injury.
Topics: Antineoplastic Agents; Apoptosis Regulatory Proteins; Cardiotonic Agents; Cardiotoxicity; Dexrazoxane; Doxorubicin; Humans; Niacinamide; Oxidative Stress; Pyridinium Compounds | 2022 |
Balancing NAD
Topics: Animals; Disease Models, Animal; Mice; NAD; Niacinamide; Pyridinium Compounds | 2022 |
A Narrative Review of Nicotinamide Adenine Dinucleotide (NAD)+ Intermediates Nicotinamide Riboside and Nicotinamide Mononucleotide for Keratinocyte Carcinoma Risk Reduction.
Topics: Carcinoma; Humans; Keratinocytes; NAD; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds; Risk Reduction Behavior | 2022 |
Emerging Role of Nicotinamide Riboside in Health and Diseases.
Topics: Humans; NAD; Niacinamide; Pyridinium Compounds; Vitamins | 2022 |
The use of Nicotinamide and Nicotinamide riboside as an adjunct therapy in the treatment of glaucoma.
Topics: Glaucoma; Humans; NAD; Niacinamide; Pyridinium Compounds | 2023 |
NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential Dietary Contribution to Health.
Topics: Diet; Humans; NAD; Niacinamide; Nicotinamide Mononucleotide | 2023 |
What is really known about the effects of nicotinamide riboside supplementation in humans.
Topics: Dietary Supplements; Humans; NAD; Niacinamide; Pyridinium Compounds | 2023 |
18 trial(s) available for niacinamide and nicotinamide-beta-riboside
Article | Year |
---|---|
Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects.
Topics: Adult; Carrier Proteins; Eating; Fasting; Female; Humans; Inflammasomes; Male; Mitochondria; Niacinamide; NLR Family, Pyrin Domain-Containing 3 Protein; Pyridinium Compounds | 2015 |
An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers.
Topics: Administration, Oral; Adult; Dietary Supplements; Female; Healthy Volunteers; Humans; Infant, Newborn; Male; Middle Aged; NAD; Niacinamide; Pyridinium Compounds; Young Adult | 2017 |
Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD
Topics: Aged; Blood Pressure; Caloric Restriction; Double-Blind Method; Female; Humans; Male; Middle Aged; NAD; Niacinamide; Pyridinium Compounds; Vascular Stiffness | 2018 |
A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: safety, insulin-sensitivity, and lipid-mobilizing effects.
Topics: Adult; Aged; Body Composition; Dietary Supplements; Double-Blind Method; Glucose; Humans; Insulin Resistance; Lipid Metabolism; Male; Middle Aged; Niacinamide; Obesity; Pyridinium Compounds | 2018 |
Safety and Metabolism of Long-term Administration of NIAGEN (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-controlled Clinical Trial of Healthy Overweight Adults.
Topics: Administration, Oral; Adult; Dietary Supplements; Double-Blind Method; Female; Healthy Volunteers; Humans; Male; Middle Aged; NAD; Niacinamide; Overweight; Provitamins; Pyridinium Compounds; Treatment Outcome | 2019 |
Effects of Nicotinamide Riboside on Endocrine Pancreatic Function and Incretin Hormones in Nondiabetic Men With Obesity.
Topics: Blood Glucose; C-Peptide; Double-Blind Method; Gastric Inhibitory Polypeptide; Glucagon; Glucagon-Like Peptide 1; Glucose Tolerance Test; Humans; Insulin; Islets of Langerhans; Male; Middle Aged; Niacinamide; Obesity; Pyridinium Compounds | 2019 |
Nicotinamide Riboside Augments the Aged Human Skeletal Muscle NAD
Topics: Aged; Aged, 80 and over; Aging; Anti-Inflammatory Agents; Cross-Sectional Studies; Cytokines; Double-Blind Method; Humans; Male; Metabolome; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds; Transcriptome | 2019 |
Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men.
Topics: Humans; Insulin Resistance; Male; Middle Aged; Mitochondria, Muscle; Muscle, Skeletal; NAD; Niacinamide; Nicotinamide Phosphoribosyltransferase; Obesity; Pyridinium Compounds | 2020 |
Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans.
Topics: Acetylcarnitine; Aged; Body Composition; Dietary Supplements; Female; Humans; Male; Middle Aged; Muscle, Skeletal; NAD; Niacinamide; Obesity; Overweight; Pyridinium Compounds | 2020 |
Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure.
Topics: Female; Heart Failure; Humans; Inflammation; Leukocytes, Mononuclear; Male; Mitochondria, Heart; Models, Cardiovascular; NAD; Niacinamide; Oxygen Consumption; Pyridinium Compounds | 2020 |
Nicotinamide riboside with pterostilbene (NRPT) increases NAD
Topics: Acute Kidney Injury; Aged; Aged, 80 and over; Creatinine; Dose-Response Relationship, Drug; Double-Blind Method; Drug Combinations; Female; Glomerular Filtration Rate; Humans; Male; Middle Aged; NAD; Niacinamide; Pilot Projects; Pyridinium Compounds; Stilbenes | 2020 |
Nicotinamide Riboside Enhances In Vitro Beta-adrenergic Brown Adipose Tissue Activity in Humans.
Topics: Adipocytes; Adipose Tissue, Brown; Adrenergic Agents; Aged; Animals; Cells, Cultured; Cross-Over Studies; Double-Blind Method; Energy Metabolism; Female; Humans; Lipolysis; Male; Mice; Mice, Inbred C57BL; Middle Aged; Niacinamide; Primary Cell Culture; Pyridinium Compounds; Receptors, Adrenergic; Thermogenesis | 2021 |
Nicotinamide riboside as a neuroprotective therapy for glaucoma: study protocol for a randomized, double-blind, placebo-control trial.
Topics: Glaucoma; Glaucoma, Open-Angle; Humans; Multicenter Studies as Topic; Nerve Fibers; Neuroprotection; Niacinamide; Pyridinium Compounds; Randomized Controlled Trials as Topic; Retinal Ganglion Cells; Visual Fields | 2022 |
The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in Parkinson's disease.
Topics: Dietary Supplements; Humans; NAD; Niacinamide; Parkinson Disease; Pyridinium Compounds | 2022 |
Exercise training and NR supplementation to improve muscle mass and fitness in adolescent and young adult hematopoietic cell transplant survivors: a randomized controlled trial {1}.
Topics: Adolescent; Adult; Dietary Supplements; Exercise; Hematopoietic Stem Cell Transplantation; Humans; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds; Quality of Life; Sarcopenia; Survivors; Young Adult | 2022 |
Effects of in ovo injection of nicotinamide riboside on high-yield broiler myogenesis.
Topics: Animals; Carbohydrates; Chickens; Muscle Development; Niacinamide; Ovum; Pyridinium Compounds | 2022 |
A randomized placebo-controlled trial of nicotinamide riboside and pterostilbene supplementation in experimental muscle injury in elderly individuals.
Topics: Aged; Creatine Kinase, MM Form; Dietary Supplements; Humans; Muscle, Skeletal; Muscular Diseases; Myoglobin; Myosin Heavy Chains; Niacinamide; Pyridinium Compounds; Stilbenes | 2022 |
NR-SAFE: a randomized, double-blind safety trial of high dose nicotinamide riboside in Parkinson's disease.
Topics: Double-Blind Method; Humans; NAD; Niacinamide; Parkinson Disease; Pyridinium Compounds | 2023 |
171 other study(ies) available for niacinamide and nicotinamide-beta-riboside
Article | Year |
---|---|
Kinetic alpha-deuterium isotope effects for enzymatic and nonenzymatic hydrolysis of nicotinamide-beta-riboside.
Topics: Animals; Brain; Deuterium; Escherichia coli; Hydrolysis; Kinetics; N-Glycosyl Hydrolases; NAD+ Nucleosidase; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds; Swine | 1978 |
Identification of novel reduced pyridinium derivatives as synthetic co-factors for the enzyme DT diaphorase (NAD(P)H dehydrogenase (quinone), EC 1.6.99.2).
Topics: Animals; Aziridines; Carcinoma 256, Walker; Coenzymes; Kinetics; NAD(P)H Dehydrogenase (Quinone); NADP; Niacinamide; Nicotinamide Mononucleotide; Oxidation-Reduction; Pyridinium Compounds; Rats; Structure-Activity Relationship; Vitamin K | 1992 |
Potentiation of CB 1954 cytotoxicity by reduced pyridine nucleotides in human tumour cells by stimulation of DT diaphorase activity.
Topics: Antineoplastic Agents; Aziridines; DNA, Neoplasm; Drug Synergism; Humans; Intracellular Fluid; Kinetics; NAD; NAD(P)H Dehydrogenase (Quinone); Niacinamide; Pyridinium Compounds; Ribonucleosides; Stimulation, Chemical; Tumor Cells, Cultured | 1992 |
Tiazofurin is phosphorylated by three enzymes from Chinese hamster ovary cells.
Topics: Adenosine Kinase; Adenosine Triphosphate; Animals; Antimetabolites, Antineoplastic; Biotransformation; Cell Line; Cricetinae; Cricetulus; Female; Inosine Monophosphate; Kinetics; Niacinamide; Ovary; Phosphorylation; Pyridinium Compounds; Ribavirin; Ribonucleosides | 1990 |
In vitro evaluation of nicotinamide riboside analogs against Haemophilus influenzae.
Topics: Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Escherichia coli; Haemophilus Infections; Haemophilus influenzae; Magnetic Resonance Spectroscopy; NAD; Niacinamide; Pyridinium Compounds | 1990 |
Phosphorylation of 3-deazaguanosine by nicotinamide riboside kinase in Chinese hamster ovary cells.
Topics: Animals; Cell Line; Cell Survival; Cricetinae; Guanosine; NAD; Niacinamide; Phosphorylation; Phosphotransferases; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds; Substrate Specificity | 1989 |
Activity of NMN+, nicotinamide ribose and analogs in alcohol oxidation promoted by horse-liver alcohol dehydrogenase. Improvement of this activity and structural requirements of the pyridine nucleotide part of the NAD+ coenzyme.
Topics: Alcohol Dehydrogenase; Alcohol Oxidoreductases; Alcohols; Animals; Coenzymes; Horses; Kinetics; Liver; NAD; Niacinamide; Nicotinamide Mononucleotide; Oxidation-Reduction; Pyridinium Compounds; Structure-Activity Relationship | 1986 |
Defining the metabolic and growth responses of porcine haemophili to exogenous pyridine nucleotides and precursors.
Topics: Animals; Glucose; Haemophilus; NAD; NADP; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds; Swine | 1986 |
Pyridine nucleotide metabolism by extracts derived from Haemophilus parasuis and H. pleuropneumoniae.
Topics: Adenosine Triphosphate; Haemophilus; NAD; NADP; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds; Species Specificity | 1986 |
Nicotinamide riboside phosphorylase from beef liver: purification and characterization.
Topics: Amino Acids; Animals; Cattle; Guanosine; Inosine; Kinetics; Liver; Molecular Weight; Niacinamide; Pentosyltransferases; Protein Conformation; Purine-Nucleoside Phosphorylase; Pyridinium Compounds; Substrate Specificity | 1987 |
Convenient method for enzymic synthesis of [14C]nicotinamide riboside.
Topics: Amidohydrolases; Carbon Radioisotopes; Isotope Labeling; N-Glycosyl Hydrolases; NAD; Niacinamide; Nucleotidases; Proteus vulgaris; Pyridinium Compounds; Pyrophosphatases; Ribonucleosides | 1980 |
Nucleoside salvage pathway for NAD biosynthesis in Salmonella typhimurium.
Topics: NAD; Niacinamide; Nicotinamide Mononucleotide; Phosphorylation; Pyridinium Compounds; Salmonella typhimurium | 1982 |
In situ enzymatic removal of orthophosphate by the nucleoside phosphorylase catalyzed phosphorolysis of nicotinamide riboside.
Topics: Animals; Catalysis; Cattle; Chemical Phenomena; Chemistry; Magnetic Resonance Spectroscopy; Niacinamide; Pentosyltransferases; Phosphates; Pyridinium Compounds; Pyrimidine Phosphorylases; Spleen | 1982 |
Structural studies on corn nitrate reductase: refined structure of the cytochrome b reductase fragment at 2.5 A, its ADP complex and an active-site mutant and modeling of the cytochrome b domain.
Topics: Adenosine Diphosphate; Amino Acid Sequence; Animals; Binding Sites; Crystallization; Cytochrome Reductases; Electron Transport; Flavin-Adenine Dinucleotide; Models, Molecular; Molecular Sequence Data; NAD; Niacinamide; Nitrate Reductases; Peptide Fragments; Point Mutation; Protein Conformation; Pyridinium Compounds; Recombinant Proteins; Zea mays | 1995 |
Nicotinamide riboside, an unusual, non-typical, substrate of purified purine-nucleoside phosphorylases.
Topics: Animals; Binding Sites; Cattle; Escherichia coli; Hydrogen-Ion Concentration; Kinetics; Niacinamide; Purine-Nucleoside Phosphorylase; Pyridinium Compounds; Spleen; Substrate Specificity | 1997 |
Bioactivation of 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB 1954) by human NAD(P)H quinone oxidoreductase 2: a novel co-substrate-mediated antitumor prodrug therapy.
Topics: Animals; Antineoplastic Agents; Aziridines; Biotransformation; Cell Line; Cricetinae; Cricetulus; Drug Screening Assays, Antitumor; Fibroblasts; Humans; Isoenzymes; NAD(P)H Dehydrogenase (Quinone); Niacinamide; Prodrugs; Pyridinium Compounds; Substrate Specificity; Transfection; Tumor Cells, Cultured | 2000 |
NadN and e (P4) are essential for utilization of NAD and nicotinamide mononucleotide but not nicotinamide riboside in Haemophilus influenzae.
Topics: Bacterial Outer Membrane Proteins; Bacterial Proteins; Biological Transport; Esterases; Haemophilus influenzae; Lipoproteins; Models, Biological; Multienzyme Complexes; NAD; Niacinamide; Nicotinamide Mononucleotide; Nucleotidases; Pyridinium Compounds; Pyrophosphatases | 2001 |
An efficient chemical synthesis of nicotinamide riboside (NAR) and analogues.
Topics: Acetylation; Magnetic Resonance Spectroscopy; Mass Spectrometry; Niacinamide; Pyridinium Compounds | 2002 |
Chemical synthesis of benzamide riboside.
Topics: Glycosides; IMP Dehydrogenase; Monosaccharides; Niacinamide; Nucleosides; Phosphorylation; Pyridinium Compounds | 2002 |
The chemistry of nicotinamide adenine dinucleotide (NAD) analogues containing C-nucleosides related to nicotinamide riboside.
Topics: Antineoplastic Agents; Cell Survival; Humans; IMP Dehydrogenase; NAD; Niacinamide; Organoselenium Compounds; Pyridinium Compounds; Ribavirin; Ribonucleosides; Ribonucleotides; Tumor Cells, Cultured | 2002 |
Nicotinamide ribosyl uptake mutants in Haemophilus influenzae.
Topics: Bacterial Proteins; Base Sequence; Biological Transport, Active; DNA, Bacterial; Genes, Bacterial; Genetic Complementation Test; Haemophilus Infections; Haemophilus influenzae; Kinetics; Mutation; Niacinamide; Pyridinium Compounds | 2003 |
A streptococcal enzyme that acts specifically upon diphosphopyridine nucleotide: characterization of the enzyme and its separation from streptolysin O.
Topics: Bacterial Proteins; NAD; Niacinamide; Phosphoric Monoester Hydrolases; Pyridinium Compounds; Streptococcus; Streptolysins | 1957 |
The phosphorolysis of nicotinamide riboside.
Topics: Niacin; Niacinamide; Pyridinium Compounds | 1951 |
Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans.
Topics: Chromosomes, Human, Pair 9; Energy Metabolism; Evolution, Molecular; Fungi; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Fungal; Humans; Intracellular Signaling Peptides and Proteins; Molecular Sequence Data; NAD; Niacinamide; Nucleosides; Phosphorylation; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds; Ribavirin; Saccharomyces cerevisiae Proteins; Sequence Homology, Amino Acid; Sequence Homology, Nucleic Acid | 2004 |
Stereoselective synthesis of nicotinamide beta-riboside and nucleoside analogs.
Topics: Glycosylation; Niacinamide; Nucleosides; Pyridinium Compounds; Stereoisomerism | 2004 |
NAD deamidation "a new reaction" by an enzyme from Aspergillus terreus DSM 826.
Topics: Acetamides; Acrylic Resins; Asparagine; Aspergillus; Chromatography, Liquid; Deamination; Enzyme Inhibitors; Enzyme Stability; Freezing; Glutamine; Hydrogen-Ion Concentration; Kinetics; NAD; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds; Substrate Specificity; Temperature | 2005 |
Coupling of NAD+ biosynthesis and nicotinamide ribosyl transport: characterization of NadR ribonucleotide kinase mutants of Haemophilus influenzae.
Topics: Amino Acid Motifs; Bacterial Proteins; Catalytic Domain; Cell Membrane; Haemophilus influenzae; Mutation; NAD; Niacinamide; Nicotinamide Phosphoribosyltransferase; Pentosyltransferases; Phosphorylation; Phosphotransferases; Protein Transport; Pyridinium Compounds; Repressor Proteins; Ribonucleotides | 2005 |
Assimilation of nicotinamide mononucleotide requires periplasmic AphA phosphatase in Salmonella enterica.
Topics: Acid Phosphatase; Bacterial Proteins; Membrane Transport Proteins; Mutation; Niacinamide; Nicotinamide Mononucleotide; Periplasm; Pyridines; Pyridinium Compounds; Repressor Proteins; Salmonella enterica | 2005 |
NAD(P)H:quinone oxidoreductase 1 and nrh:quinone oxidoreductase 2 activity and expression in bladder and ovarian cancer and lower NRH:quinone oxidoreductase 2 activity associated with an NQO2 exon 3 single-nucleotide polymorphism.
Topics: Female; Humans; NAD(P)H Dehydrogenase (Quinone); Niacinamide; Ovarian Neoplasms; Polymorphism, Restriction Fragment Length; Polymorphism, Single Nucleotide; Pyridinium Compounds; Quinone Reductases; Reverse Transcriptase Polymerase Chain Reaction; Urinary Bladder Neoplasms | 2007 |
Initial-rate kinetics of human NMN-adenylyltransferases: substrate and metal ion specificity, inhibition by products and multisubstrate analogues, and isozyme contributions to NAD+ biosynthesis.
Topics: Cell Line; Cell Line, Tumor; Chlorides; Humans; Isoenzymes; Kinetics; Magnesium Chloride; NAD; Niacinamide; Nicotinamide-Nucleotide Adenylyltransferase; Pyridinium Compounds; Ribavirin; Substrate Specificity; Zinc Compounds | 2007 |
Vitamins and aging: pathways to NAD+ synthesis.
Topics: Aging; Animals; Histone Deacetylases; Humans; Longevity; NAD; Niacinamide; Pyridinium Compounds; Saccharomyces cerevisiae; Silent Information Regulator Proteins, Saccharomyces cerevisiae; Sirtuin 2; Sirtuins; Vitamins | 2007 |
Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+.
Topics: Gene Silencing; Histone Deacetylases; Metabolic Networks and Pathways; N-Glycosyl Hydrolases; NAD; Niacin; Niacinamide; Nicotinamidase; Phosphotransferases (Alcohol Group Acceptor); Purine-Nucleoside Phosphorylase; Pyridinium Compounds; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Signal Transduction; Silent Information Regulator Proteins, Saccharomyces cerevisiae; Sirtuin 2; Sirtuins | 2007 |
SIRT1 activation confers neuroprotection in experimental optic neuritis.
Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Axonal Transport; Axons; Dose-Response Relationship, Drug; Electroretinography; Mice; Mice, Inbred Strains; Neuroprotective Agents; Niacinamide; Optic Neuritis; Photoreceptor Cells, Vertebrate; Pyridinium Compounds; Resveratrol; Retinal Ganglion Cells; Sirtuin 1; Sirtuins; Stilbenes | 2007 |
Assimilation of NAD(+) precursors in Candida glabrata.
Topics: Animals; Candida glabrata; Gene Deletion; Metabolic Networks and Pathways; Mice; N-Glycosyl Hydrolases; NAD; Niacin; Niacinamide; Nicotinamidase; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds | 2007 |
Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells.
Topics: Animals; Cell Line; Cell Line, Tumor; Cell Survival; Esters; Humans; Mice; NAD; Niacinamide; Nucleosides; Pyridinium Compounds; Structure-Activity Relationship | 2007 |
Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1.
Topics: Biological Transport; Hydrogen-Ion Concentration; Kinetics; Membrane Transport Proteins; Mutation; NAD; Niacinamide; Nucleoside Transport Proteins; Protein Binding; Pyridinium Compounds; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins | 2008 |
beta-1,2,3-Triazolyl-nucleosides as nicotinamide riboside mimics.
Topics: Binding Sites; Models, Molecular; Molecular Mimicry; Molecular Structure; Niacinamide; Nucleosides; Pyridinium Compounds; Sirtuins; Stereoisomerism; Triazoles | 2009 |
Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae.
Topics: Animals; Caloric Restriction; Genes, Fungal; Histone Deacetylases; Hot Temperature; Longevity; Mammals; Models, Biological; Mutation; N-Glycosyl Hydrolases; NAD; Niacinamide; Pentosyltransferases; Pyridinium Compounds; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Silent Information Regulator Proteins, Saccharomyces cerevisiae; Sirtuin 2; Sirtuins; Stress, Physiological; Time Factors | 2009 |
Identification of Isn1 and Sdt1 as glucose- and vitamin-regulated nicotinamide mononucleotide and nicotinic acid mononucleotide [corrected] 5'-nucleotidases responsible for production of nicotinamide riboside and nicotinic acid riboside.
Topics: 5'-Nucleotidase; Gene Knockout Techniques; Glucose; NAD; Niacin; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds; Ribonucleosides; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Vitamins | 2009 |
The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity.
Topics: Acetylation; Adipose Tissue, Brown; Animals; Brain; Diet, High-Fat; Dietary Supplements; Electron Transport Complex I; Energy Metabolism; HEK293 Cells; Humans; Liver; Male; Mice; Mice, Inbred C57BL; Mitochondria; Muscle, Skeletal; NAD; Niacinamide; Obesity; Organ Specificity; Oxidation-Reduction; Oxygen Consumption; Protein Processing, Post-Translational; Pyridinium Compounds; Receptors, G-Protein-Coupled; Receptors, Nicotinic; Sirtuin 1; Sirtuin 3; Superoxide Dismutase; Weight Gain | 2012 |
Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models.
Topics: Alzheimer Disease; Amyloid Precursor Protein Secretases; Animals; Aspartic Acid Endopeptidases; Cells, Cultured; Cognition Disorders; Disease Models, Animal; Gene Expression Regulation; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mitochondria; Niacinamide; Organ Culture Techniques; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Pyridinium Compounds; Transcription Factors; Up-Regulation | 2013 |
Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3.
Topics: Adipose Tissue, Brown; Animals; Energy Metabolism; Forkhead Box Protein O1; Forkhead Transcription Factors; Lipid Metabolism; Liver; Male; Mice; Mice, Inbred C57BL; Mitochondria; Mitochondrial Myopathies; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds; Sirtuin 1; Unfolded Protein Response; Vitamin B Complex | 2014 |
YCL047C/POF1 is a novel nicotinamide mononucleotide adenylyltransferase (NMNAT) in Saccharomyces cerevisiae.
Topics: Amino Acid Sequence; Homeostasis; Molecular Sequence Data; NAD; Niacinamide; Nicotinamide-Nucleotide Adenylyltransferase; Pyridinium Compounds; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins | 2014 |
NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease.
Topics: Animals; Dietary Supplements; Disease Models, Animal; Electron Transport Complex IV; Energy Metabolism; Enzyme Activation; Gene Expression; Mice; Mice, Knockout; Mitochondria; Mitochondrial Diseases; Molecular Chaperones; NAD; Niacinamide; Oxidative Phosphorylation; Phenanthrenes; Phenotype; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Pyridinium Compounds; Sirtuin 1 | 2014 |
Salvaging hope: Is increasing NAD(+) a key to treating mitochondrial myopathy?
Topics: Animals; Male; Mitochondria; Mitochondrial Myopathies; Niacinamide; Pyridinium Compounds; Vitamin B Complex | 2014 |
A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157.
Topics: ADP-ribosyl Cyclase; Animals; Antigens, CD; Catalysis; CHO Cells; Cricetinae; Cricetulus; GPI-Linked Proteins; Humans; Hydrolysis; Kinetics; Niacinamide; Nuclear Magnetic Resonance, Biomolecular; Pyridinium Compounds; Ribonucleosides | 2014 |
Crystal structure of the vitamin B3 transporter PnuC, a full-length SWEET homolog.
Topics: Amino Acid Sequence; Bacterial Proteins; Binding Sites; Biological Transport; Conserved Sequence; Crystallography, X-Ray; Escherichia coli; Gene Expression; Models, Molecular; Molecular Sequence Data; Neisseria mucosa; Niacinamide; Protein Binding; Protein Conformation; Protein Folding; Pyridinium Compounds; Recombinant Proteins; Sequence Homology, Amino Acid; Substrate Specificity | 2014 |
Activation of SIRT3 by the NAD⁺ precursor nicotinamide riboside protects from noise-induced hearing loss.
Topics: Animals; Female; Hearing Loss, Noise-Induced; Male; Mice; NAD; Niacinamide; Pyridinium Compounds; Sirtuin 3 | 2014 |
Reversing neurodegenerative hearing loss.
Topics: Animals; Disease Models, Animal; Hearing Loss; Humans; Mice; Mice, Knockout; NAD; Neurodegenerative Diseases; Niacinamide; Pyridinium Compounds; Sirtuin 3 | 2015 |
Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts.
Topics: Energy Metabolism; Fibroblasts; Homeostasis; Humans; Infant; Leukoencephalopathies; Membrane Potential, Mitochondrial; Mitochondria; Mutation; NAD; NADH Dehydrogenase; Niacinamide; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Pyridinium Compounds; Signal Transduction | 2015 |
Nicotinamide Riboside Ameliorates Hepatic Metaflammation by Modulating NLRP3 Inflammasome in a Rodent Model of Type 2 Diabetes.
Topics: Adiponectin; Animals; Anti-Inflammatory Agents; Apoptosis Regulatory Proteins; Blood Glucose; CARD Signaling Adaptor Proteins; Carrier Proteins; Caspase 1; Cholesterol; Diabetes Mellitus, Type 2; Disease Models, Animal; Inflammasomes; Inflammation; Insulin; Interleukin-1beta; Liver; Male; Mice; Niacinamide; NLR Family, Pyrin Domain-Containing 3 Protein; Obesity; Pyridinium Compounds; Tumor Necrosis Factor-alpha; Vitamin B Complex | 2015 |
Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells.
Topics: 5'-Nucleotidase; Cytokines; HEK293 Cells; Hep G2 Cells; Humans; Kinetics; Magnetic Resonance Spectroscopy; Metabolic Networks and Pathways; NAD; Niacin; Niacinamide; Nicotinamide Phosphoribosyltransferase; Pentosyltransferases; Phosphorylation; Pyridinium Compounds; Recombinant Proteins; Ribonucleosides; Signal Transduction; Substrate Specificity | 2015 |
Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice.
Topics: Analysis of Variance; Animals; Area Under Curve; Biopsy, Needle; Diet, High-Fat; Disease Models, Animal; Fatty Liver; Immunohistochemistry; Lipid Metabolism; Male; Mice; Mice, Inbred C57BL; Mitochondria; NAD; Niacinamide; Pyridinium Compounds; Random Allocation; Sensitivity and Specificity; Treatment Outcome; Unfolded Protein Response | 2016 |
Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart.
Topics: Animals; Cardiomyopathies; Cell Respiration; Iron; Mice; Mitophagy; Myocardium; Niacinamide; Pyridinium Compounds; Receptors, Transferrin | 2015 |
Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model.
Topics: 5'-Nucleotidase; Acrylamides; Adenosine Triphosphate; Animals; Cell Line, Tumor; Cytokines; Female; GPI-Linked Proteins; Humans; Mice; Mice, Nude; NAD; Niacinamide; Nicotinamide Mononucleotide; Nicotinamide Phosphoribosyltransferase; Ovarian Neoplasms; Piperidines; Pyridinium Compounds; RNA Interference; RNA, Small Interfering | 2016 |
Nicotinamide Riboside Is a Major NAD+ Precursor Vitamin in Cow Milk.
Topics: Animals; Cattle; Commerce; Female; Food Microbiology; Food, Organic; Magnetic Resonance Spectroscopy; Milk; Milk Proteins; NAD; Niacin; Niacinamide; Provitamins; Pyridinium Compounds; Staphylococcus aureus; Tandem Mass Spectrometry; Vitamin B Complex | 2016 |
NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice.
Topics: Animals; Cellular Reprogramming; Cellular Senescence; Disease Models, Animal; Longevity; Melanocytes; Mice; Mice, Inbred C57BL; Mice, Inbred mdx; Mitochondria; Muscular Dystrophies; Myoblasts, Skeletal; NAD; Neural Stem Cells; Niacinamide; Oxidative Stress; Prohibitins; Pyridinium Compounds; Repressor Proteins; Unfolded Protein Response | 2016 |
Nicotinamide Riboside Opposes Type 2 Diabetes and Neuropathy in Mice.
Topics: Animals; Blood Glucose; Cornea; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Diet, High-Fat; Hypoglycemic Agents; Insulin; Insulin Resistance; Liver; Male; Mice; Mice, Inbred C57BL; Niacinamide; Obesity; Prediabetic State; Pyridinium Compounds; Streptozocin | 2016 |
CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism.
Topics: ADP-ribosyl Cyclase 1; Aging; Animals; Diet, High-Fat; Mammals; Mice, Inbred C57BL; Mice, Knockout; Mitochondria; NAD; NAD+ Nucleosidase; Niacinamide; Organ Specificity; Pyridinium Compounds; RNA, Messenger; Sirtuin 3 | 2016 |
Auxotrophic Actinobacillus pleurpneumoniae grows in multispecies biofilms without the need for nicotinamide-adenine dinucleotide (NAD) supplementation.
Topics: Acetylglucosamine; Actinobacillus Infections; Actinobacillus pleuropneumoniae; Animals; Biofilms; Bordetella bronchiseptica; Culture Media; Deoxyribonuclease I; Endopeptidase K; Escherichia coli; In Situ Hybridization, Fluorescence; Microscopy, Confocal; NAD; Niacinamide; Nicotinamide Mononucleotide; Pasteurella multocida; Pyridines; Pyridinium Compounds; Species Specificity; Staphylococcus aureus; Stem Cells; Streptococcus suis; Swine; Swine Diseases | 2016 |
The NAD(+) precursor nicotinamide riboside decreases exercise performance in rats.
Topics: Animals; Dietary Supplements; Male; Muscle, Skeletal; NAD; Niacinamide; Oxidation-Reduction; Phosphorylation; Physical Conditioning, Animal; Pyridinium Compounds; Rats; Rats, Wistar | 2016 |
Loss of NAD Homeostasis Leads to Progressive and Reversible Degeneration of Skeletal Muscle.
Topics: Administration, Oral; Aging; Animals; Biological Availability; Energy Metabolism; Glucose; Homeostasis; Inflammation; Mice, Inbred C57BL; Mice, Knockout; Mitochondria; Muscle Strength; Muscle, Skeletal; NAD; Necrosis; Niacinamide; Nicotinamide Phosphoribosyltransferase; Organ Size; Physical Conditioning, Animal; Pyridinium Compounds; Transcription, Genetic | 2016 |
Nicotinamide riboside is uniquely and orally bioavailable in mice and humans.
Topics: Administration, Oral; Animals; Biological Availability; Biomarkers; Humans; Leukocytes, Mononuclear; Liver; Male; Metabolome; Mice, Inbred C57BL; Middle Aged; NAD; Niacinamide; Pyridinium Compounds; Vitamins | 2016 |
NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells.
Topics: Animals; Hep G2 Cells; Hepatocytes; Humans; Injections, Intraperitoneal; Mammals; Mice, Knockout; NAD; Niacinamide; Nicotinamide Mononucleotide; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds | 2016 |
Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration.
Topics: Animals; Disease Models, Animal; Fluorescent Antibody Technique; Hepatectomy; Immunoblotting; Immunohistochemistry; Liver; Liver Regeneration; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; NAD; Niacinamide; Pyridinium Compounds; Random Allocation; Sensitivity and Specificity | 2017 |
Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay.
Topics: Animals; Cattle; Enzyme Assays; Equidae; Fluorometry; Food Analysis; Food Handling; Humans; Milk; Milk, Human; NAD; Niacinamide; Nicotinamide Mononucleotide; Pasteurization; Pyridinium Compounds | 2017 |
Effects of a wide range of dietary nicotinamide riboside (NR) concentrations on metabolic flexibility and white adipose tissue (WAT) of mice fed a mildly obesogenic diet.
Topics: Adipokines; Adipose Tissue, White; Animals; Blood Glucose; Carbohydrate Metabolism; Diet; Dietary Supplements; Fatty Acids; Gene Expression Regulation; Lipids; Male; Mice, Inbred C57BL; Niacinamide; Obesity; Oxidation-Reduction; Peroxiredoxin III; PPAR gamma; Pyridinium Compounds; Superoxide Dismutase | 2017 |
Nicotinamide riboside, a form of vitamin B3 and NAD+ precursor, relieves the nociceptive and aversive dimensions of paclitaxel-induced peripheral neuropathy in female rats.
Topics: Animals; Antineoplastic Agents, Phytogenic; Disease Models, Animal; Eosinophils; Escape Reaction; Female; Hyperalgesia; Leukocyte Count; Locomotion; NAD; Neutrophils; Niacinamide; Nociception; Paclitaxel; Pain Measurement; Peripheral Nervous System Diseases; Pyridinium Compounds; Rats; Rats, Sprague-Dawley; Statistics, Nonparametric; Time Factors | 2017 |
Nicotinamide riboside, a form of vitamin B
Topics: Animals; Axons; Cell Death; Cells, Cultured; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; N-Methylaspartate; Neurons; Neuroprotective Agents; Niacinamide; Pyridinium Compounds; Real-Time Polymerase Chain Reaction | 2017 |
ALSUntangled 42: Elysium health's "basis".
Topics: Adult; Amyotrophic Lateral Sclerosis; Humans; Male; Niacinamide; Pyridinium Compounds; Stilbenes | 2018 |
A Direct Prebiotic Synthesis of Nicotinamide Nucleotide.
Topics: Catalysis; Evolution, Chemical; Niacinamide; Nucleotides; Organophosphates; Oxidation-Reduction; Pyridinium Compounds; RNA | 2018 |
Enhancing mitochondrial proteostasis reduces amyloid-β proteotoxicity.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Caenorhabditis elegans; Disease Models, Animal; Homeostasis; Humans; Male; Memory; Mice; Mice, Transgenic; Mitochondria; Mitophagy; NAD; Niacinamide; Oxidative Phosphorylation; Protein Aggregation, Pathological; Protein Biosynthesis; Proteostasis; Pyridinium Compounds; Unfolded Protein Response | 2017 |
Nicotinamide Riboside Preserves Cardiac Function in a Mouse Model of Dilated Cardiomyopathy.
Topics: Acrylamides; AMP-Activated Protein Kinases; Animals; Cardiomyopathy, Dilated; Citric Acid; Cytokines; Dietary Supplements; Disease Models, Animal; Gene Expression Profiling; Heart Failure; Metabolome; Mice; Mice, Transgenic; Myocytes, Cardiac; NAD; Niacinamide; Nicotinamide Phosphoribosyltransferase; Phosphotransferases (Alcohol Group Acceptor); Piperidines; PPAR alpha; Pyridinium Compounds; Rats; Serum Response Factor | 2018 |
Synthesis of β-Nicotinamide Riboside Using an Efficient Two-Step Methodology.
Topics: Animals; Chromatography, High Pressure Liquid; NAD; Niacinamide; Nicotinic Acids; Proton Magnetic Resonance Spectroscopy; Pyridinium Compounds; Stereoisomerism | 2017 |
Overexpression of NRK1 ameliorates diet- and age-induced hepatic steatosis and insulin resistance.
Topics: Aging; Animals; Diet, High-Fat; Fatty Liver; HEK293 Cells; Humans; Insulin Resistance; Lipid Metabolism; Liver; Male; Mice; Mice, Inbred C57BL; NAD; Niacinamide; NIH 3T3 Cells; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds; Triglycerides | 2018 |
Nicotinamide riboside attenuates alcohol induced liver injuries via activation of SirT1/PGC-1α/mitochondrial biosynthesis pathway.
Topics: Animals; Chemical and Drug Induced Liver Injury; Ethanol; Gene Expression Regulation; Hep G2 Cells; Humans; Lipid Metabolism; Mice; Mitochondria; NAD; Niacinamide; Oxidative Stress; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Pyridinium Compounds; RNA, Long Noncoding | 2018 |
Chemo-enzymatic synthesis of isotopically labeled nicotinamide riboside.
Topics: Chemistry Techniques, Synthetic; Enzymes; Isotope Labeling; Niacinamide; Pyridinium Compounds | 2018 |
Raising NAD in Heart Failure: Time to Translate?
Topics: Animals; Cardiomyopathy, Dilated; Heart Failure; Mice; NAD; Niacinamide; Pyridinium Compounds | 2018 |
Administration of nicotinamide riboside prevents oxidative stress and organ injury in sepsis.
Topics: Animals; Apoptosis; Disease Models, Animal; HMGB1 Protein; Lipopolysaccharides; Macrophages; Male; Mice; Mice, Inbred C57BL; Multiple Organ Failure; Niacinamide; Oxidative Stress; Pyridinium Compounds; Sepsis | 2018 |
The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson's Disease.
Topics: Animals; Autophagy; Disease Models, Animal; Dopaminergic Neurons; Drosophila melanogaster; Endoplasmic Reticulum Stress; Glucosylceramidase; Humans; Induced Pluripotent Stem Cells; Mitochondria; Mitochondrial Dynamics; Motor Activity; NAD; Neurons; Niacinamide; Parkinson Disease; Pyridinium Compounds; Unfolded Protein Response | 2018 |
Nicotinamide adenine dinucleotide is transported into mammalian mitochondria.
Topics: Animals; Biological Transport; Cell Line; HEK293 Cells; HL-60 Cells; Humans; Male; Mice; Mice, Inbred C57BL; Mitochondria, Liver; Mitochondria, Muscle; Myoblasts; NAD; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds | 2018 |
Nicotinamide riboside supplementation dysregulates redox and energy metabolism in rats: Implications for exercise performance.
Topics: Animals; Catalase; Energy Metabolism; Erythrocytes; Glutathione Peroxidase; Glutathione Reductase; Male; NAD; Niacinamide; Oxidation-Reduction; Physical Conditioning, Animal; Pyridinium Compounds; Rats; Rats, Wistar | 2018 |
Programming of the Beige Phenotype in White Adipose Tissue of Adult Mice by Mild Resveratrol and Nicotinamide Riboside Supplementations in Early Postnatal Life.
Topics: Adipose Tissue, Brown; Adipose Tissue, White; Age Factors; Animals; Animals, Newborn; Body Weight; Diet, High-Fat; Dietary Supplements; Female; Gene Expression Regulation; Lactation; Male; Mice, Inbred Strains; Niacinamide; Phenotype; Pyridinium Compounds; Resveratrol; Thermogenesis | 2018 |
Nicotinamide riboside induces a thermogenic response in lean mice.
Topics: Adipose Tissue, Brown; Administration, Oral; Animals; Body Temperature; Cytokines; Gene Expression Profiling; Gene Expression Regulation; Male; Mice; Mice, Inbred C57BL; Niacinamide; Nicotinamide Phosphoribosyltransferase; Nicotinamide-Nucleotide Adenylyltransferase; Pyridinium Compounds; Thermogenesis; Thinness; Uncoupling Protein 1 | 2018 |
Pharmacological bypass of NAD
Topics: Acrylamides; Animals; Antineoplastic Agents, Phytogenic; Drug Combinations; Francisella tularensis; Ganglia, Spinal; NAD; Nerve Degeneration; Neurons; Niacinamide; Nicotinamide Mononucleotide; Nicotinamide Phosphoribosyltransferase; Piperidines; Pyridinium Compounds; Vincristine | 2018 |
Sirtuin 3 deficiency aggravates contrast-induced acute kidney injury.
Topics: Acute Kidney Injury; Animals; Apoptosis; Cell Line; Contrast Media; Cytoprotection; Disease Models, Animal; Humans; Kidney; Male; Mice, Knockout; Niacinamide; Oxidative Stress; Pyridinium Compounds; Reactive Oxygen Species; Sirtuin 3; Triiodobenzoic Acids | 2018 |
Nicotinamide ribose ameliorates cognitive impairment of aged and Alzheimer's disease model mice.
Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid beta-Protein Precursor; Animals; Astrocytes; Brain; Cognition; Cognitive Dysfunction; Disease Models, Animal; Memory; Mice; Microglia; Motor Activity; Niacinamide; Nicotinamide Phosphoribosyltransferase; Pyridinium Compounds | 2019 |
Maternal Nicotinamide Riboside Enhances Postpartum Weight Loss, Juvenile Offspring Development, and Neurogenesis of Adult Offspring.
Topics: Animals; Female; Lactation; Liver; Maternal Exposure; Mice; NAD; Neurogenesis; Niacinamide; Postpartum Period; Pregnancy; Prenatal Exposure Delayed Effects; Pyridinium Compounds; Weight Loss | 2019 |
Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: a double-blind cross-over study.
Topics: Adult; Age Factors; Aged; Animals; Cross-Over Studies; Dietary Supplements; Disease Models, Animal; Double-Blind Method; Homeostasis; Humans; Male; Niacinamide; Oxidation-Reduction; Oxidative Stress; Physical Endurance; Pyridinium Compounds; Young Adult | 2020 |
First quantification of nicotinamide riboside with B
Topics: Chromatography, Reverse-Phase; Coenzymes; Humans; Limit of Detection; Linear Models; Milk, Human; Niacinamide; Pyridinium Compounds; Reproducibility of Results; Tandem Mass Spectrometry | 2019 |
Nicotinamide riboside has protective effects in a rat model of mesenteric ischaemia-reperfusion.
Topics: Animals; Disease Models, Animal; Drug Evaluation, Preclinical; Endothelium, Vascular; Intestine, Small; Laser-Doppler Flowmetry; Male; Mesenteric Arteries; Mesenteric Ischemia; Microcirculation; Niacinamide; Pyridinium Compounds; Rats, Wistar; Reperfusion Injury | 2018 |
NR Supplementation During Lactation: Benefiting Mother and Child.
Topics: Adolescent; Adult Children; Child; Dietary Supplements; Female; Humans; Lactation; Mothers; NAD; Neurogenesis; Niacinamide; Postpartum Period; Pyridinium Compounds; Weight Loss | 2019 |
Enhanced SIRT6 activity abrogates the neurotoxic phenotype of astrocytes expressing ALS-linked mutant SOD1.
Topics: Animals; Antioxidant Response Elements; Astrocytes; Gene Expression Regulation; Mice; Mutation; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds; Sirtuins; Superoxide Dismutase-1 | 2019 |
The NAD-Booster Nicotinamide Riboside Potently Stimulates Hematopoiesis through Increased Mitochondrial Clearance.
Topics: Animals; Cells, Cultured; Hematopoiesis; Hematopoietic Stem Cells; Humans; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitochondria; NAD; Niacinamide; Pyridinium Compounds | 2019 |
NAD
Topics: Adult Stem Cells; Aging; Animals; Carbazoles; Cell Proliferation; Cells, Cultured; Dextran Sulfate; Intestinal Mucosa; Male; Mice; Mice, Inbred C57BL; NAD; Niacinamide; Pyridinium Compounds; Rejuvenation; Sirolimus | 2019 |
Nicotinamide riboside protects against liver fibrosis induced by CCl
Topics: Acetylation; Animals; Carbon Tetrachloride; E1A-Associated p300 Protein; Gene Expression Regulation; Hepatic Stellate Cells; Liver Cirrhosis; Male; Mice; Mice, Inbred C57BL; Niacinamide; Protective Agents; Pyridinium Compounds; Sirtuin 1; Smad2 Protein; Smad3 Protein; Transforming Growth Factor beta | 2019 |
NAD metabolites interfere with proliferation and functional properties of THP-1 cells.
Topics: Antigens, Differentiation; Cell Cycle; Cell Proliferation; Chemokines; Humans; Lipopolysaccharides; Monocytes; NAD; Niacinamide; Poly (ADP-Ribose) Polymerase-1; Pyridinium Compounds; Reactive Oxygen Species; Sirtuin 1; THP-1 Cells; Tumor Necrosis Factor-alpha | 2019 |
Nicotinamide riboside, an NAD+ precursor, attenuates the development of liver fibrosis in a diet-induced mouse model of liver fibrosis.
Topics: Animals; Body Weight; Collagen; Diet, High-Fat; Dietary Supplements; Disease Models, Animal; Energy Metabolism; Hepatic Stellate Cells; Humans; Liver; Mice; Mice, Inbred C57BL; Muscle, Skeletal; NAD; Niacinamide; Non-alcoholic Fatty Liver Disease; Pyridinium Compounds | 2019 |
Nicotinamide riboside promotes autolysosome clearance in preventing doxorubicin-induced cardiotoxicity.
Topics: Animals; Antioxidants; Autophagy; Cardiotoxicity; Cells, Cultured; Cytoprotection; Disease Models, Animal; Doxorubicin; Heart Diseases; Hydrogen-Ion Concentration; Lysosomes; Male; Mice, Inbred C57BL; Mice, Transgenic; Myocytes, Cardiac; NAD; Niacinamide; Oxidative Stress; Pyridinium Compounds; Sirtuin 1 | 2019 |
Supplementation with Nicotinamide Riboside Reduces Brain Inflammation and Improves Cognitive Function in Diabetic Mice.
Topics: Animals; Anti-Inflammatory Agents; Brain; CARD Signaling Adaptor Proteins; Caspase 3; Cognition; Cognitive Dysfunction; Diabetes Mellitus, Experimental; Interleukin-6; Male; Maze Learning; Mice; Mice, Inbred ICR; Niacinamide; NLR Family, Pyrin Domain-Containing 3 Protein; Pyridinium Compounds; Tumor Necrosis Factor-alpha | 2019 |
NAD
Topics: Aerobiosis; Animals; Cell Respiration; Male; Mice; Mice, Inbred C57BL; Mitochondria; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds | 2020 |
Endogenous nicotinamide riboside metabolism protects against diet-induced liver damage.
Topics: Animals; Blood Glucose; Diet, High-Fat; Disease Models, Animal; DNA Damage; Gene Knockout Techniques; Genetic Predisposition to Disease; Glucose Intolerance; Hepatocytes; Insulin Resistance; Lipid Metabolism; Liver; Liver Diseases; Male; Metabolic Syndrome; Mice; Mice, Inbred C57BL; Mice, Knockout; NAD; Niacinamide; Phosphotransferases (Alcohol Group Acceptor); Protective Agents; Pyridinium Compounds | 2019 |
High Dose of Dietary Nicotinamide Riboside Induces Glucose Intolerance and White Adipose Tissue Dysfunction in Mice Fed a Mildly Obesogenic Diet.
Topics: Adipose Tissue, White; Animals; Blood Glucose; Diet, High-Fat; Dose-Response Relationship, Drug; Energy Metabolism; Glucose Intolerance; Glucose Tolerance Test; Inflammation; Male; Mice; Niacinamide; Obesity; PPAR gamma; Pyridinium Compounds | 2019 |
The senotherapeutic nicotinamide riboside raises platelet nicotinamide adenine dinucleotide levels but cannot prevent storage lesion.
Topics: Apoptosis; bcl-2 Homologous Antagonist-Killer Protein; Blood Platelets; Blood Preservation; Caspase 3; Cytochromes c; Humans; NAD; Niacinamide; Platelet Aggregation; Pyridinium Compounds | 2020 |
A reduced form of nicotinamide riboside defines a new path for NAD
Topics: Animals; Cell Line; Male; Mice; NAD; Niacinamide; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds; Rats | 2019 |
Nicotinamide riboside alleviates alcohol-induced depression-like behaviours in C57BL/6J mice by altering the intestinal microbiota associated with microglial activation and BDNF expression.
Topics: Animals; Brain-Derived Neurotrophic Factor; Cytokines; Depression; Disease Models, Animal; Ethanol; Gastrointestinal Microbiome; Hippocampus; Male; Mice; Mice, Inbred C57BL; Microglia; Niacinamide; Pyridinium Compounds; RNA, Ribosomal, 16S | 2020 |
Nicotinamide riboside supplementation to improve skeletal muscle mitochondrial health and whole-body glucose homeostasis: does it actually work in humans?
Topics: Dietary Supplements; Glucose; Homeostasis; Humans; Insulin; Male; Muscle, Skeletal; Niacinamide; Obesity; Pyridinium Compounds | 2020 |
Nicotinamide riboside rescues angiotensin II-induced cerebral small vessel disease in mice.
Topics: Angiotensin II; Animals; Cerebral Small Vessel Diseases; Infusion Pumps, Implantable; Male; Mice; Mice, Inbred C57BL; Niacinamide; Pyridinium Compounds | 2020 |
DNA Methylation Changes are Associated with the Programming of White Adipose Tissue Browning Features by Resveratrol and Nicotinamide Riboside Neonatal Supplementations in Mice.
Topics: 3T3-L1 Cells; Adipose Tissue, Brown; Adipose Tissue, White; Administration, Oral; Animal Nutritional Physiological Phenomena; Animals; Animals, Newborn; Dietary Supplements; DNA Methylation; Epigenesis, Genetic; Male; Mice; Niacinamide; Pyridinium Compounds; Resveratrol | 2020 |
Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway.
Topics: Administration, Oral; Amides; Animals; Biosynthetic Pathways; Cell Line, Tumor; Cytokines; Energy Metabolism; Female; Gastrointestinal Microbiome; Humans; Male; Mammals; Metabolome; Mice, Inbred C57BL; Mycoplasma; NAD; Niacinamide; Nicotinamidase; Nicotinamide Mononucleotide; Nicotinamide Phosphoribosyltransferase; Pyridinium Compounds | 2020 |
Nicotinamide riboside protects noise-induced hearing loss by recovering the hair cell ribbon synapses.
Topics: Acoustic Stimulation; Animals; Hair Cells, Auditory, Inner; Hearing Loss, Noise-Induced; Male; Mice; Mice, Inbred C57BL; Niacinamide; Oxidative Stress; Pyridinium Compounds; Recovery of Function; Synapses | 2020 |
Nicotinamide riboside-amino acid conjugates that are stable to purine nucleoside phosphorylase.
Topics: Amino Acids; Biocatalysis; Molecular Structure; Niacinamide; Prodrugs; Purine-Nucleoside Phosphorylase; Pyridinium Compounds | 2020 |
Deletion of Topoisomerase 1 in excitatory neurons causes genomic instability and early onset neurodegeneration.
Topics: Animals; Apoptosis; Cerebral Cortex; DNA Damage; DNA Topoisomerases, Type I; Genomic Instability; Hippocampus; Inflammation; Mice; Mice, Knockout; Mortality, Premature; Motor Activity; Mutation; NAD; Neurodegenerative Diseases; Neurons; Niacinamide; Poly (ADP-Ribose) Polymerase-1; Pyridinium Compounds | 2020 |
The acute effect of metabolic cofactor supplementation: a potential therapeutic strategy against non-alcoholic fatty liver disease.
Topics: Acetylcysteine; Adult; Animals; Carnitine; Dietary Supplements; Drug Therapy, Combination; Healthy Volunteers; Humans; Male; Metabolomics; Models, Animal; Niacinamide; Non-alcoholic Fatty Liver Disease; Precision Medicine; Pyridinium Compounds; Rats; Serine | 2020 |
Targeting sirtuin activity with nicotinamide riboside reduces neuroinflammation in a GWI mouse model.
Topics: Aged; Animals; Anti-Inflammatory Agents; Astrocytes; Behavior, Animal; Brain; Case-Control Studies; Disease Models, Animal; Energy Metabolism; Fatigue; Female; Gulf War; Humans; Male; Mice, Inbred C57BL; Middle Aged; Mitochondria; NAD; Niacinamide; Organelle Biogenesis; Oxidative Stress; Persian Gulf Syndrome; Pilot Projects; Pyridinium Compounds; Sirtuin 1; Veterans Health | 2020 |
Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside.
Topics: 5'-Nucleotidase; Animals; Cell Line; Endothelial Cells; Extracellular Fluid; Female; Humans; Mice; Mice, Inbred C57BL; Mice, Knockout; Niacinamide; Nicotinamide Mononucleotide; Pyridinium Compounds | 2020 |
Fat mobilization without weight loss is a potentially rapid response to nicotinamide riboside in obese people: it's time to test with exercise.
Topics: Acetylcarnitine; Body Composition; Dietary Supplements; Humans; Muscle, Skeletal; Niacinamide; Obesity; Pyridinium Compounds; Weight Loss | 2020 |
Nicotinamide riboside relieves paclitaxel-induced peripheral neuropathy and enhances suppression of tumor growth in tumor-bearing rats.
Topics: Animals; Female; Neoplasms; Niacinamide; Paclitaxel; Peripheral Nervous System Diseases; Pyridinium Compounds; Rats | 2020 |
Impact of nicotinamide riboside supplementation on skeletal muscle mitochondria and whole-body glucose homeostasis: challenging the current hypothesis.
Topics: Dietary Supplements; Glucose; Homeostasis; Humans; Insulin; Male; Mitochondria, Muscle; Muscle, Skeletal; Niacinamide; Obesity; Pyridinium Compounds; Respiration | 2020 |
Nicotinamide riboside supplementation corrects deficits in oxytocin, sociability and anxiety of CD157 mutants in a mouse model of autism spectrum disorder.
Topics: ADP-ribosyl Cyclase; Animals; Antigens, CD; Anxiety; Autism Spectrum Disorder; Dietary Supplements; Disease Models, Animal; Female; GPI-Linked Proteins; Male; Mice; Mice, Mutant Strains; Niacinamide; Oxytocin; Pyridinium Compounds; Social Behavior | 2020 |
A bioluminescent probe for longitudinal monitoring of mitochondrial membrane potential.
Topics: Adipocytes; Adipose Tissue, Brown; Aging; Animals; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Diagnostic Imaging; Dioxoles; Female; Firefly Luciferin; Fluorescent Dyes; Luciferases; Luminescent Measurements; Mammary Neoplasms, Experimental; Membrane Potential, Mitochondrial; Membrane Potentials; Mice; Mice, Nude; Mitochondria; Niacinamide; Nigericin; Pyridinium Compounds | 2020 |
Axonal Protection by Nicotinamide Riboside via SIRT1-Autophagy Pathway in TNF-Induced Optic Nerve Degeneration.
Topics: Animals; Autophagy; Axons; Male; Microtubule-Associated Proteins; Nerve Degeneration; Neuroprotection; Niacinamide; Optic Nerve; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds; Rats, Wistar; Retina; Sequestosome-1 Protein; Sirtuin 1; Tumor Necrosis Factor-alpha | 2020 |
Systemic Treatment With Nicotinamide Riboside Is Protective in a Mouse Model of Light-Induced Retinal Degeneration.
Topics: Animals; Disease Models, Animal; Electroretinography; Fluorescent Antibody Technique; Injections, Intraperitoneal; Light; Male; Mice; Mice, Inbred BALB C; NAD; Niacinamide; Photoreceptor Cells, Vertebrate; Pyridinium Compounds; Retina; Retinal Degeneration; Tomography, Optical Coherence | 2020 |
Physical exercise may exert its therapeutic influence on Alzheimer's disease through the reversal of mitochondrial dysfunction via SIRT1-FOXO1/3-PINK1-Parkin-mediated mitophagy.
Topics: Adenosine Triphosphate; Alzheimer Disease; Amyloid beta-Peptides; Brain-Derived Neurotrophic Factor; Disease Progression; Exercise; Forkhead Box Protein O1; Humans; Mitochondria; Mitochondrial Diseases; Mitophagy; NAD; Niacinamide; Nicotinamide Mononucleotide; Protein Kinases; Pyridinium Compounds; Reactive Oxygen Species; Sirtuin 1; Ubiquitin-Protein Ligases | 2021 |
Re-equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction.
Topics: ADP-ribosyl Cyclase 1; Animals; Brain; Cell Line; Cellular Senescence; Dyskeratosis Congenita; Female; Fibroblasts; Homeostasis; Humans; Membrane Glycoproteins; Mice; Mice, Knockout; Mitochondria; NAD; Niacinamide; Phenotype; Poly (ADP-Ribose) Polymerase-1; Pyridinium Compounds; Telomerase; Telomere | 2020 |
Adult zebrafish as an in vivo drug testing model for ethanol induced acute hepatic injury.
Topics: Alanine Transaminase; Alcoholism; Animals; Disease Models, Animal; Ethanol; Gene Expression Regulation; Inflammation; Liver Diseases, Alcoholic; Niacinamide; Pyridinium Compounds; Riboflavin; Time Factors; Zebrafish | 2020 |
Coronavirus infection and PARP expression dysregulate the NAD metabolome: An actionable component of innate immunity.
Topics: A549 Cells; Adenosine Diphosphate Ribose; ADP-Ribosylation; Adult; Animals; Cell Line, Tumor; COVID-19; Female; Ferrets; Humans; Immunity, Innate; Male; Metabolome; Mice; Mice, Inbred C57BL; NAD; Niacinamide; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Pyridinium Compounds; SARS-CoV-2 | 2020 |
Nicotinamide riboside reduces cardiometabolic risk factors and modulates cardiac oxidative stress in obese Wistar rats under caloric restriction.
Topics: Animals; Antioxidants; Caloric Restriction; Cardiometabolic Risk Factors; Insulin Resistance; Male; Niacinamide; Obesity; Oxidative Stress; Pyridinium Compounds; Rats; Rats, Wistar; Thiobarbituric Acid Reactive Substances | 2020 |
A second riboswitch class for the enzyme cofactor NAD
Topics: Bacterial Proteins; Base Sequence; Binding Sites; Carrier Proteins; Coenzymes; Computational Biology; Corynebacterium glutamicum; Haemophilus influenzae; Lactobacillus acidophilus; NAD; Niacinamide; Nucleic Acid Conformation; Protein Binding; Pyridinium Compounds; Riboswitch; Shewanella; Streptococcus | 2021 |
Complementary NAD
Topics: ADP-ribosyl Cyclase 1; Animals; Dystrophin; Enzyme Inhibitors; Male; Membrane Glycoproteins; Metabolome; Mice; Mice, Inbred C57BL; Mice, Inbred mdx; Muscle Contraction; Muscle, Skeletal; Muscular Dystrophy, Duchenne; NAD; Niacinamide; Pyridinium Compounds | 2020 |
Differential role of nicotinamide adenine dinucleotide deficiency in acute and chronic kidney disease.
Topics: Acute Kidney Injury; Animals; Antineoplastic Agents; Cisplatin; Disease Models, Animal; Disease Progression; Humans; Male; Mice; Mice, Inbred C57BL; Niacinamide; Pyridinium Compounds; Renal Insufficiency, Chronic; Reperfusion Injury | 2021 |
Nicotinamide Riboside and Pterostilbene Cooperatively Delay Motor Neuron Failure in ALS SOD1
Topics: Acetylcysteine; Amyotrophic Lateral Sclerosis; Animals; Antioxidants; Apoptosis; Cytokines; Female; Male; Metabolome; Mice, Inbred C57BL; Mice, Transgenic; Mitochondria; Motor Activity; Motor Neurons; Mutation; NAD; Nerve Degeneration; NF-E2-Related Factor 2; Niacinamide; Oxidation-Reduction; Pyridinium Compounds; Reactive Oxygen Species; Sirtuin 1; Sirtuin 3; Spinal Cord; Stilbenes; Superoxide Dismutase-1; Survival Analysis | 2021 |
Organ-specific effects on glycolysis by the dioxin-activated aryl hydrocarbon receptor.
Topics: Adult; Animals; Cells, Cultured; Chick Embryo; Dioxins; Female; Gene Expression Regulation; Glucose; Glycolysis; Humans; Liver; Membrane Transport Proteins; Niacinamide; Organ Specificity; Polychlorinated Dibenzodioxins; Pyridinium Compounds; Receptors, Aryl Hydrocarbon; RNA, Messenger; Thymus Gland | 2020 |
Nicotinamide riboside supplementation does not alter whole-body or skeletal muscle metabolic responses to a single bout of endurance exercise.
Topics: Dietary Supplements; Exercise; Male; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds | 2021 |
The effects of in ovo nicotinamide riboside dose on broiler myogenesis.
Topics: Animals; Body Weight; Chickens; Muscle Development; Niacinamide; Ovum; Pyridinium Compounds | 2021 |
Equilibrative Nucleoside Transporters Mediate the Import of Nicotinamide Riboside and Nicotinic Acid Riboside into Human Cells.
Topics: Aging; Cytosol; Equilibrative Nucleoside Transport Proteins; HEK293 Cells; Humans; Magnetic Resonance Spectroscopy; Membrane Transport Proteins; Metabolomics; NAD; Niacinamide; Nicotinamide Mononucleotide; Phosphorylation; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds; Recombinant Proteins; Ribonucleosides | 2021 |
Of mice and men: opposing effects of nicotinamide riboside on skeletal muscle physiology at rest and during exercise.
Topics: Dietary Supplements; Exercise; Humans; Muscle, Skeletal; Niacinamide; Pyridinium Compounds | 2021 |
SIRT3 is required for liver regeneration but not for the beneficial effect of nicotinamide riboside.
Topics: Animals; Hepatocytes; Liver Regeneration; Male; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Mitochondria, Liver; Niacinamide; Oxidation-Reduction; Pyridinium Compounds; Sirtuin 1; Sirtuin 3 | 2021 |
NAD
Topics: Animals; Ataxia Telangiectasia; Ataxia Telangiectasia Mutated Proteins; Case-Control Studies; Cell Line, Tumor; Dietary Supplements; Disease Models, Animal; Female; Fibroblasts; Humans; Male; Membrane Proteins; Mice; Mice, Knockout; Mitochondria; Mitophagy; NAD; Neurons; Niacinamide; Pyridinium Compounds; Rats; Rats, Sprague-Dawley; Senescence-Associated Secretory Phenotype; Signal Transduction; Transfection; Treatment Outcome | 2021 |
17-a-estradiol late in life extends lifespan in aging UM-HET3 male mice; nicotinamide riboside and three other drugs do not affect lifespan in either sex.
Topics: Aging; Animals; Estradiol; Female; Longevity; Male; Mice; Niacinamide; Pyridinium Compounds; Sex Characteristics | 2021 |
Nicotinamide mononucleotide production by fructophilic lactic acid bacteria.
Topics: Escherichia coli; Fructose; Lactobacillales; Leuconostoc; Niacinamide; Nicotinamide Mononucleotide; Nicotinamide Phosphoribosyltransferase; Pyridinium Compounds | 2021 |
Nicotinamide riboside, an NAD
Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Ethanol; Inflammation; Macrophages; Mice; Niacinamide; Oxidative Stress; Pyridinium Compounds; RAW 264.7 Cells; Sirtuin 1 | 2021 |
Inhibition of CD38 and supplementation of nicotinamide riboside ameliorate lipopolysaccharide-induced microglial and astrocytic neuroinflammation by increasing NAD
Topics: ADP-ribosyl Cyclase 1; Animals; Apigenin; Astrocytes; Chemokines; Cytokines; Gene Deletion; Hippocampus; Inflammation; Injections, Intraventricular; Lipopolysaccharides; Macrophage Activation; Male; Membrane Glycoproteins; Mice; Mice, Inbred ICR; Mice, Knockout; Microglia; NAD; Nerve Degeneration; NF-kappa B; Niacinamide; Pyridinium Compounds | 2021 |
NAD
Topics: Acetylation; Acyl-CoA Dehydrogenase; Animals; Disease Models, Animal; Down-Regulation; Fatty Acids; Heart Failure, Diastolic; Humans; Ketone Oxidoreductases; Male; Mice; Mice, Inbred C57BL; Mitochondria, Heart; Mitochondrial Myopathies; NAD; Niacinamide; Oxidation-Reduction; Oxygen Consumption; Pyridinium Compounds; Sirtuin 3 | 2021 |
Nicotinamide riboside attenuates age-associated metabolic and functional changes in hematopoietic stem cells.
Topics: Age Factors; Aging; Animals; Bone Marrow Cells; Cells, Cultured; Gene Expression Profiling; Gene Expression Regulation; Hematopoietic Stem Cells; Mice, Inbred C57BL; Mice, Transgenic; Mitochondria; Models, Biological; NAD; Niacinamide; Oxidative Phosphorylation; Pyridinium Compounds | 2021 |
Nicotinamide Riboside will Play an Important Role in Anti-aging Therapy in Humans, Especially in the Face Skin Anti-aging Treatment.
Topics: Aging; Humans; Niacinamide; Pyridinium Compounds | 2022 |
Effect of NAD+ boosting on kidney ischemia-reperfusion injury.
Topics: Acute Kidney Injury; Animals; Autophagy; Disease Progression; Fibrosis; Glucuronidase; Kidney; Klotho Proteins; Male; Mitochondria; NAD; Niacinamide; Protective Agents; Pyridinium Compounds; Random Allocation; Rats; Rats, Wistar; Renal Insufficiency, Chronic; Reperfusion Injury; Signal Transduction; Sirtuin 1; Treatment Outcome | 2021 |
Instability in NAD
Topics: Animals; DNA Damage; DNA Repair; DNA, Mitochondrial; Heart; Heart Diseases; HeLa Cells; Humans; Mice; Mitochondria; Myocardium; NAD; Niacinamide; Pyridinium Compounds; Sirtuins | 2021 |
Enzymatic and Chemical Syntheses of Vacor Analogs of Nicotinamide Riboside, NMN and NAD.
Topics: ADP-ribosyl Cyclase; Animals; Antineoplastic Agents; Aplysia; Cell Proliferation; HEK293 Cells; Humans; NAD; Niacinamide; Phenylurea Compounds; Phosphotransferases (Alcohol Group Acceptor); Pyridinium Compounds | 2021 |
Nicotinamide riboside has minimal impact on energy metabolism in mouse models of mild obesity.
Topics: Animals; Cell Respiration; Diet, High-Fat; Disease Models, Animal; Drug Evaluation; Energy Metabolism; Glucose Intolerance; Lipid Metabolism; Liver; Male; Mice, Inbred C57BL; Muscle, Skeletal; Niacinamide; Obesity; Pyridinium Compounds | 2021 |
Nicotinamide Riboside Improves Ataxia Scores and Immunoglobulin Levels in Ataxia Telangiectasia.
Topics: Animals; Ataxia Telangiectasia; Humans; Immunoglobulins; Niacinamide; Pyridinium Compounds; Quality of Life | 2021 |
Nicotinamide Riboside Alleviates Cardiac Dysfunction and Remodeling in Pressure Overload Cardiac Hypertrophy.
Topics: Animals; Apoptosis; Atrial Remodeling; Cardiomegaly; Inflammasomes; Male; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; Niacinamide; Oxidative Stress; Pressure; Pyridinium Compounds; Ventricular Remodeling | 2021 |
Modulation of cGAS-STING Pathway by Nicotinamide Riboside in Alzheimer's Disease.
Topics: Alzheimer Disease; Animals; Humans; Membrane Proteins; Mice; Niacinamide; Nucleotidyltransferases; Pyridinium Compounds | 2021 |
BST1 regulates nicotinamide riboside metabolism via its glycohydrolase and base-exchange activities.
Topics: A549 Cells; Administration, Oral; ADP-ribosyl Cyclase; Aging; Animals; Antigens, CD; Dietary Supplements; Gastrointestinal Microbiome; Glycoside Hydrolases; GPI-Linked Proteins; Humans; Intestinal Mucosa; Intestine, Small; Mice; Mice, Knockout; Niacin; Niacinamide; Pentosyltransferases; Pyridinium Compounds | 2021 |
Nicotinamide riboside relieves the severity of experimental necrotizing enterocolitis by regulating endothelial function via eNOS deacetylation.
Topics: Animals; Disease Models, Animal; Endothelial Cells; Enterocolitis, Necrotizing; Mice; Microcirculation; NAD; Niacinamide; Nitric Oxide Synthase Type III; Pyridinium Compounds; Sirtuin 1; Tumor Necrosis Factor-alpha | 2022 |
Acute Treatment with Nicotinamide Riboside Chloride Reduces Hippocampal Damage and Preserves the Cognitive Function of Mice with Ischemic Injury.
Topics: Animals; Chlorides; Cognition; Hippocampus; Infarction, Middle Cerebral Artery; Mice; NAD; Niacinamide; Pyridinium Compounds | 2022 |
A reduced form of nicotinamide riboside protects the cochlea against aminoglycoside-induced ototoxicity by SIRT1 activation.
Topics: 14-3-3 Proteins; Aminoglycosides; Animals; Anti-Bacterial Agents; Cochlea; Hearing Loss; Kanamycin; Mice; NAD; Niacinamide; Ototoxicity; Pyridinium Compounds; Reactive Oxygen Species; Resveratrol; Sirtuin 1 | 2022 |
Nicotinamide Riboside Supplementation to Suckling Male Mice Improves Lipid and Energy Metabolism in Skeletal Muscle and Liver in Adulthood.
Topics: Animals; Diet, High-Fat; Dietary Supplements; Energy Metabolism; Lipid Metabolism; Lipids; Liver; Male; Mice; Mice, Inbred C57BL; Muscle, Skeletal; NAD; Niacinamide; Pyridinium Compounds; Triglycerides | 2022 |
Nicotinamide riboside and caffeine partially restore diminished NAD availability but not altered energy metabolism in Alzheimer's disease.
Topics: Alzheimer Disease; Caffeine; Energy Metabolism; Humans; NAD; Niacinamide; Pyridinium Compounds | 2022 |
Nicotinamide Riboside and Dihydronicotinic Acid Riboside Synergistically Increase Intracellular NAD
Topics: Animals; Mammals; Mice; NAD; Niacinamide; Pyridinium Compounds | 2022 |
Nicotinamide riboside alleviates exercise intolerance in ANT1-deficient mice.
Topics: Adenine Nucleotide Translocator 1; Animals; Mice; Mitochondrial Myopathies; Muscle Weakness; NAD; Niacinamide; Physical Conditioning, Animal; Protein Isoforms; Pyridinium Compounds | 2022 |
Nicotinamide Riboside for Ataxia Telangiectasia: A Report of an Early Treated Individual.
Topics: Adolescent; Ataxia; Ataxia Telangiectasia; Child, Preschool; Humans; Niacinamide; Pyridinium Compounds | 2023 |
Purine nucleoside phosphorylase controls nicotinamide riboside metabolism in mammalian cells.
Topics: Animals; Humans; Mammals; Mice; NAD; Niacinamide; Purine-Nucleoside Phosphorylase; Pyridinium Compounds | 2022 |
Intravenous Nicotinamide Riboside Administration Has a Cardioprotective Effect in Chronic Doxorubicin-Induced Cardiomyopathy.
Topics: Animals; Cardiomyopathies; Doxorubicin; Male; NAD; Niacinamide; Pyridinium Compounds; Rats; Rats, Wistar | 2022 |
A bioluminescent-based probe for in vivo non-invasive monitoring of nicotinamide riboside uptake reveals a link between metastasis and NAD
Topics: Animals; Biosensing Techniques; Humans; NAD; Niacinamide; Pyridinium Compounds; Triple Negative Breast Neoplasms | 2023 |
Dietary supplementation with nicotinamide riboside improves fetal growth under hypoglycemia.
Topics: Animals; Dietary Supplements; Female; Fetal Development; Humans; Hyperglycemia; Hypoglycemia; Hypoglycemic Agents; Insulin; Mice; Niacinamide; Pregnancy | 2023 |
Nicotinamide Riboside Improves Enteric Neuropathy in Streptozocin-Induced Diabetic Rats Through Myenteric Plexus Neuroprotection.
Topics: Animals; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Humans; Intestinal Pseudo-Obstruction; Myenteric Plexus; Neuroprotection; Niacinamide; Rats; Streptozocin | 2023 |
Systematic engineering of Escherichia coli for efficient production of nicotinamide riboside from nicotinamide and 3-cyanopyridine.
Topics: Escherichia coli; NAD; Niacinamide; Pyridinium Compounds | 2023 |
Nicotinamide riboside activates SIRT5 deacetylation.
Topics: Animals; Humans; Mammals; Niacinamide; Peptides; Pyridinium Compounds; Sirtuins | 2023 |
A riboside hydrolase that salvages both nucleobases and nicotinamide in the auxotrophic parasite Trichomonas vaginalis.
Topics: Animals; Crystallography, X-Ray; Hydrolases; Models, Molecular; NAD; Niacinamide; Parasites; Protein Binding; Protein Structure, Tertiary; Substrate Specificity; Trichomonas vaginalis | 2023 |
Nicotinamide riboside intervention alleviates hematopoietic system injury of ionizing radiation-induced premature aging mice.
Topics: Aging, Premature; Animals; Hematopoietic Stem Cells; Humans; Mice; Niacinamide; Radiation, Ionizing; Whole-Body Irradiation | 2023 |