niacinamide and lenvatinib

niacinamide has been researched along with lenvatinib in 28 studies

Research

Studies (28)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's27 (96.43)24.3611
2020's1 (3.57)2.80

Authors

AuthorsStudies
Arango, BA; Cohen, EE; Perez, CA; Raez, LE; Santos, ES1
Atkins, J; Busaidy, N; Fu, S; Hong, D; Kurzrock, R; Naing, A; Sherman, S; Wheler, J1
Ito, K; Sugino, K; Takami, H1
Colao, A; Faggiano, A; Marotta, V; Sciammarella, C; Vitale, M1
Karedan, T; Perez, CA; Wang, E1
Agulnik, M; Carneiro, BA; Carneiro, RM; Giles, FJ; Kopp, PA1
Kiyota, N1
Covell, LL; Ganti, AK1
Cai, J; Ye, X; Zhu, Y1
de la Fouchardière, C2
Ellis, LM; Harris, AL; Jayson, GC; Kerbel, R1
Okano, S1
Jarzab, B; Krajewska, J; Kukulska, A1
Calvo, E; Escudier, B; Grünwald, V; Heng, DY; Schmidinger, M1
Brzostek, T; Kawalec, P; Kózka, M; Malinowska-Lipień, I1
Camille, N; Dang, RP; Genden, EM; Le, VH; McFarland, D; Miles, BA; Misiukiewicz, KJ; Teng, MS1
Brose, MS; DeSanctis, Y; Fellous, M; Lin, CC; Pitoia, F; Schlumberger, M; Smit, J; Sugitani, I; Tori, M1
Cao, V; Chen, L; Huang, W; Ting, J; Wilson, L1
Agarwal, N; Gill, DM; Vaishampayan, U1
Gandhi, S; George, S; Jain, RK1
Pacini, F1
Agate, L; Bottici, V; Cappagli, V; Danesi, R; Del Re, M; Elisei, R; Giani, C; Lorusso, L; Matrone, A; Molinaro, E; Pieruzzi, L; Puleo, L; Valerio, L; Viola, D1
Arvat, E; Berardelli, R; Felicetti, F; Gallo, M; Marchisio, F; Nervo, A; Piovesan, A1
García-Alemán, J; Mancha-Doblas, I; Molina-Vega, M; Sebastián-Ochoa, A; Tinahones-Madueño, F; Trigo-Pérez, JM1
Baron, A; Blanc, JF; Cheng, AL; Dutcus, C; Evans, TRJ; Finn, RS; Guo, M; Han, G; Han, KH; Ikeda, K; Jassem, J; Komov, D; Kraljevic, S; Kudo, M; Lopez, C; Park, JW; Piscaglia, F; Qin, S; Ren, M; Saito, K; Tamai, T; Vogel, A1
Ikeda, M; Kaneko, S; Kobayashi, M; Tahara, M1
Atsukawa, M; Azemoto, R; Haga, Y; Ikeda, M; Inaba, Y; Inoue, M; Ito, K; Itobayashi, E; Itoh, Y; Itokawa, N; Kanogawa, N; Kanzaki, H; Kato, N; Kiyono, S; Kobayashi, K; Kondo, T; Koroki, K; Maruta, S; Moriguchi, M; Morimoto, N; Nakamoto, S; Nakamura, K; Nakamura, M; Ogasawara, S; Okabe, S; Okubo, T; Ooka, Y; Seko, Y; Shiko, Y; Suzuki, E; Takatsuka, H; Watanabe, S1

Reviews

19 review(s) available for niacinamide and lenvatinib

ArticleYear
Novel molecular targeted therapies for refractory thyroid cancer.
    Head & neck, 2012, Volume: 34, Issue:5

    Topics: Angiogenesis Inhibitors; Anilides; Antineoplastic Agents; Axitinib; Benzamides; Benzenesulfonates; Benzoquinones; Bibenzyls; Boronic Acids; Bortezomib; Depsipeptides; ErbB Receptors; Gefitinib; Histone Deacetylase Inhibitors; HSP90 Heat-Shock Proteins; Humans; Hydroxamic Acids; Imatinib Mesylate; Imidazoles; Indazoles; Indoles; Lactams, Macrocyclic; Lenalidomide; Niacinamide; Oligonucleotides; Phenylurea Compounds; Piperazines; Piperidines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-kit; Pyrazines; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Quinolines; Receptor Protein-Tyrosine Kinases; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Sulfonamides; Sunitinib; Thalidomide; Thyroid Neoplasms; Valproic Acid; Vorinostat

2012
Development of molecular targeted drugs for advanced thyroid cancer in Japan.
    Endocrine journal, 2014, Volume: 61, Issue:9

    Topics: Antineoplastic Agents; Clinical Trials as Topic; Humans; Japan; Molecular Targeted Therapy; Neovascularization, Pathologic; Niacinamide; Phenylurea Compounds; Piperidines; Quinazolines; Quinolines; Sorafenib; Thyroid Neoplasms

2014
The evolving field of kinase inhibitors in thyroid cancer.
    Critical reviews in oncology/hematology, 2015, Volume: 93, Issue:1

    Topics: Angiogenesis Inhibitors; Anilides; Antineoplastic Agents; Humans; Niacinamide; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Pyridines; Quinazolines; Quinolines; Sorafenib; Thyroid Neoplasms

2015
New insights in the treatment of radioiodine refractory differentiated thyroid carcinomas: to lenvatinib and beyond.
    Anti-cancer drugs, 2015, Volume: 26, Issue:7

    Topics: Antineoplastic Agents; Clinical Trials, Phase II as Topic; Humans; Iodine Radioisotopes; Mutation; Neoplasm Metastasis; Niacinamide; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Quinazolines; Quinolines; Signal Transduction; Sorafenib; Thyroid Neoplasms; Treatment Failure

2015
Targeted therapies in advanced differentiated thyroid cancer.
    Cancer treatment reviews, 2015, Volume: 41, Issue:8

    Topics: Antineoplastic Agents; Humans; Molecular Targeted Therapy; Neoplasm Staging; Niacinamide; Outcome Assessment, Health Care; Phenylurea Compounds; Quinolines; raf Kinases; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Thyroid Neoplasms

2015
Treatment of advanced thyroid cancer: role of molecularly targeted therapies.
    Targeted oncology, 2015, Volume: 10, Issue:3

    Topics: Anilides; Antineoplastic Agents; Axitinib; Carcinoma, Neuroendocrine; DNA Mutational Analysis; Drug Approval; Humans; Imidazoles; Indazoles; Indoles; MAP Kinase Signaling System; Molecular Targeted Therapy; Niacinamide; Oligonucleotides; Phenylurea Compounds; Phosphatidylinositol 3-Kinases; Piperidines; Proto-Oncogene Proteins c-ret; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Quinolines; Sorafenib; Sulfonamides; Sunitinib; Thyroid Neoplasms; United States; United States Food and Drug Administration; Vascular Endothelial Growth Factor A

2015
Relationship between toxicities and clinical benefits of newly approved tyrosine kinase inhibitors in thyroid cancer: A meta-analysis of literature.
    Journal of cancer research and therapeutics, 2015, Volume: 11 Suppl 2

    Topics: Antineoplastic Agents; Female; Humans; Male; Neoplasm Recurrence, Local; Niacinamide; Odds Ratio; Phenylurea Compounds; Protein Kinase Inhibitors; Publication Bias; Quinolines; Sorafenib; Thyroid Neoplasms; Treatment Outcome

2015
Targeted treatments of radio-iodine refractory differentiated thyroid cancer.
    Annales d'endocrinologie, 2015, Volume: 76, Issue:1 Suppl 1

    Topics: Antineoplastic Agents; Clinical Trials as Topic; Humans; Iodine Radioisotopes; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Quinolines; Randomized Controlled Trials as Topic; Sorafenib; Thyroid Neoplasms; Treatment Failure

2015
Antiangiogenic therapy in oncology: current status and future directions.
    Lancet (London, England), 2016, Jul-30, Volume: 388, Issue:10043

    Topics: Angiogenesis Inhibitors; Angiopoietin-1; Biomarkers, Tumor; Disease-Free Survival; Drug Resistance, Neoplasm; Female; Humans; Molecular Targeted Therapy; Neoplasms; Neovascularization, Pathologic; Niacinamide; Phenylurea Compounds; Phthalazines; Piperazines; Poly(ADP-ribose) Polymerase Inhibitors; Protein Kinase Inhibitors; Quinazolines; Quinolines; Receptor, TIE-2; Signal Transduction; Sorafenib; Vascular Endothelial Growth Factor A

2016
[New molecular target therapy for thyroid neoplasms and malignant melanomas].
    Nihon Jibiinkoka Gakkai kaiho, 2015, Volume: 118, Issue:11

    Topics: Antibodies, Monoclonal; Antineoplastic Agents; Clinical Trials as Topic; Humans; Indoles; Ipilimumab; Melanoma; Molecular Targeted Therapy; Niacinamide; Nivolumab; Phenylurea Compounds; Quinolines; Skin Neoplasms; Sorafenib; Sulfonamides; Thyroid Neoplasms; Vemurafenib

2015
Improvement in survival end points of patients with metastatic renal cell carcinoma through sequential targeted therapy.
    Cancer treatment reviews, 2016, Volume: 50

    Topics: Anilides; Antibodies, Monoclonal; Antineoplastic Agents; Axitinib; Bevacizumab; Biomarkers, Tumor; Carcinoma, Renal Cell; DNA-Binding Proteins; Everolimus; Gene Expression Regulation, Neoplastic; Histone-Lysine N-Methyltransferase; Humans; Imidazoles; Immunologic Factors; Indazoles; Indoles; Interferon-alpha; Kidney Neoplasms; MicroRNAs; Molecular Targeted Therapy; Mutation; Niacinamide; Nivolumab; Nuclear Proteins; Phenylurea Compounds; Precision Medicine; Prognosis; Pyridines; Pyrimidines; Pyrroles; Quinolines; Receptors, CCR4; Sirolimus; Sorafenib; Sulfonamides; Sunitinib; Transcription Factors; Tumor Suppressor Proteins; Ubiquitin Thiolesterase; Vascular Endothelial Growth Factor A; Von Hippel-Lindau Tumor Suppressor Protein

2016
Lenvatinib for the treatment of radioiodine-refractory differentiated thyroid carcinoma: a systematic review and indirect comparison with sorafenib.
    Expert review of anticancer therapy, 2016, Volume: 16, Issue:12

    Topics: Antineoplastic Agents; Humans; Neoplasm Staging; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Quinolines; Sorafenib; Survival Rate; Thyroid Neoplasms; Treatment Outcome

2016
Neoadjuvant Therapy in Differentiated Thyroid Cancer.
    International journal of surgical oncology, 2016, Volume: 2016

    Topics: Adenocarcinoma; Antibiotics, Antineoplastic; Antineoplastic Agents; Clinical Trials as Topic; Doxorubicin; Humans; Indazoles; Japan; Molecular Targeted Therapy; Neoadjuvant Therapy; Neoplasm Staging; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrimidines; Quinolines; Slovenia; Sorafenib; Sulfonamides; Thyroid Neoplasms; Treatment Outcome

2016
Evolving Treatment Paradigm in Metastatic Renal Cell Carcinoma.
    American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting, 2017, Volume: 37

    Topics: Carcinoma, Renal Cell; Cell Proliferation; Gene Expression Regulation, Neoplastic; Humans; Indoles; Neoplasm Metastasis; Neoplasm Proteins; Neovascularization, Pathologic; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrroles; Quinolines; Sorafenib; Sunitinib; Von Hippel-Lindau Tumor Suppressor Protein

2017
Second-line systemic therapy in metastatic renal-cell carcinoma: A review.
    Urologic oncology, 2017, Volume: 35, Issue:11

    Topics: Anilides; Antineoplastic Agents; Axitinib; Carcinoma, Renal Cell; Everolimus; Humans; Imidazoles; Indazoles; Kidney Neoplasms; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Quinolines; Sorafenib

2017
Which patient with thyroid cancer deserves systemic therapy and when?
    Best practice & research. Clinical endocrinology & metabolism, 2017, Volume: 31, Issue:3

    Topics: Antineoplastic Agents; Humans; Iodine Radioisotopes; Niacinamide; Patient Selection; Phenylurea Compounds; Protein Kinase Inhibitors; Quinolines; Sorafenib; Survival Analysis; Thyroid Neoplasms; Treatment Failure

2017
Protein kinase inhibitors for the treatment of advanced and progressive radiorefractory thyroid tumors: From the clinical trials to the real life.
    Best practice & research. Clinical endocrinology & metabolism, 2017, Volume: 31, Issue:3

    Topics: Antineoplastic Agents; Chemotherapy, Adjuvant; Clinical Trials as Topic; Humans; Iodine Radioisotopes; Niacinamide; Phenylurea Compounds; Practice Patterns, Physicians'; Protein Kinase Inhibitors; Quinolines; Sorafenib; Thyroid Neoplasms; Treatment Failure

2017
Tyrosine kinase inhibitors rechallenge in solid tumors: a review of literature and a case description with lenvatinib in thyroid cancer.
    Expert review of anticancer therapy, 2017, Volume: 17, Issue:12

    Topics: Adult; Antineoplastic Agents; Disease Progression; Female; Humans; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Quinolines; Sorafenib; Thyroid Neoplasms; Tomography, X-Ray Computed

2017
Optimal management of patients with hepatocellular carcinoma treated with lenvatinib.
    Expert opinion on drug safety, 2018, Volume: 17, Issue:11

    Topics: Antineoplastic Agents; Carcinoma, Hepatocellular; Humans; Liver Neoplasms; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Quinolines; Sorafenib; Survival Rate

2018

Trials

2 trial(s) available for niacinamide and lenvatinib

ArticleYear
Tumor marker and measurement fluctuations may not reflect treatment efficacy in patients with medullary thyroid carcinoma on long-term RET inhibitor therapy.
    Annals of oncology : official journal of the European Society for Medical Oncology, 2013, Volume: 24, Issue:9

    Topics: Adult; Aged; Aged, 80 and over; Anilides; Antineoplastic Agents; Biomarkers, Tumor; Calcitonin; Carcinoembryonic Antigen; Carcinoma, Neuroendocrine; Disease Progression; Female; Humans; Indoles; Male; Middle Aged; Niacinamide; Phenylurea Compounds; Proto-Oncogene Proteins c-ret; Pyridines; Pyrroles; Quinolines; Quinolones; Retrospective Studies; Sorafenib; Sunitinib; Thyroid Neoplasms; Treatment Outcome; Valproic Acid

2013
Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial.
    Lancet (London, England), 2018, 03-24, Volume: 391, Issue:10126

    Topics: Aged; Antineoplastic Agents; Carcinoma, Hepatocellular; Female; Humans; Liver Neoplasms; Male; Middle Aged; Niacinamide; Phenylurea Compounds; Quinolines; Sorafenib; Survival Rate; Treatment Outcome

2018

Other Studies

7 other study(ies) available for niacinamide and lenvatinib

ArticleYear
[Molecular targeting treatment for thyroid cancer].
    Gan to kagaku ryoho. Cancer & chemotherapy, 2015, Volume: 42, Issue:7

    Topics: Antineoplastic Agents; Clinical Trials as Topic; Humans; Molecular Targeted Therapy; Niacinamide; Phenylurea Compounds; Quinolines; Sorafenib; Thyroid Neoplasms

2015
Efficacy of lenvatinib in treating thyroid cancer.
    Expert opinion on pharmacotherapy, 2016, Volume: 17, Issue:12

    Topics: Biomarkers; Calcitonin; Carcinoma, Neuroendocrine; Clinical Trials as Topic; Half-Life; Humans; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Quinolines; Sorafenib; Thyroglobulin; Thyroid Neoplasms

2016
[Lenvatinib in radioiodine refractory thyroid carcinomas].
    Bulletin du cancer, 2016, Volume: 103, Issue:11

    Topics: Adenocarcinoma, Follicular; Antineoplastic Agents; Clinical Trials as Topic; Compassionate Use Trials; Humans; Iodine Radioisotopes; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Quinolines; Sorafenib; Thyroid Neoplasms

2016
Timing of multikinase inhibitor initiation in differentiated thyroid cancer.
    Endocrine-related cancer, 2017, Volume: 24, Issue:5

    Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Agents; Carcinoma; Drug Administration Schedule; Female; Humans; Iodine Radioisotopes; Male; Middle Aged; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Quinolines; Salvage Therapy; Sorafenib; Thyroid Neoplasms; Time Factors; Treatment Failure

2017
Cost Effectiveness of Lenvatinib, Sorafenib and Placebo in Treatment of Radioiodine-Refractory Differentiated Thyroid Cancer.
    Thyroid : official journal of the American Thyroid Association, 2017, Volume: 27, Issue:8

    Topics: Aged; Antineoplastic Agents; Cell Differentiation; Clinical Trials, Phase III as Topic; Controlled Clinical Trials as Topic; Cost-Benefit Analysis; Drug Costs; Female; Health Care Costs; Humans; Male; Middle Aged; Models, Economic; Monte Carlo Method; Neoplasm Grading; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Quality of Life; Quinolines; Sorafenib; Survival Analysis; Thyroid Neoplasms; Tumor Burden; United States

2017
Tyrosine kinase inhibitors in iodine-refractory differentiated thyroid cancer: experience in clinical practice.
    Endocrine, 2018, Volume: 59, Issue:2

    Topics: Adenocarcinoma, Follicular; Adenoma, Oxyphilic; Adult; Aged; Antineoplastic Agents; Axitinib; Carcinoma, Papillary; Disease-Free Survival; Female; Humans; Imidazoles; Indazoles; Male; Middle Aged; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Quinolines; Sorafenib; Survival Rate; Thyroid Neoplasms; Treatment Outcome

2018
A Prospective Study Exploring the Safety and Efficacy of Lenvatinib for Patients with Advanced Hepatocellular Carcinoma and High Tumor Burden: The LAUNCH Study.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2023, Dec-01, Volume: 29, Issue:23

    Topics: Antineoplastic Agents; Carcinoma, Hepatocellular; Humans; Liver Neoplasms; Niacinamide; Prospective Studies; Treatment Outcome; Tumor Burden

2023