niacinamide has been researched along with dabrafenib in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 3 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Allegra, M; Bahadoran, P; Ballotti, R; Giacchero, D; Hofman, P; Lacour, JP; Le Duff, F; Long-Mira, E; Passeron, T | 1 |
Fiskus, W; Mitsiades, N | 1 |
Lou, L; Quan, H; Wang, H | 1 |
3 other study(ies) available for niacinamide and dabrafenib
Article | Year |
---|---|
Major clinical response to a BRAF inhibitor in a patient with a BRAF L597R-mutated melanoma.
Topics: Aged; Antineoplastic Agents; Arginine; Back; Cell Survival; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Female; Humans; Imidazoles; Indoles; Leucine; Lung Neoplasms; MAP Kinase Signaling System; Melanoma; Niacinamide; Oximes; Phenylurea Compounds; Point Mutation; Proto-Oncogene Proteins B-raf; Skin Neoplasms; Sorafenib; Sulfonamides; Vemurafenib | 2013 |
B-Raf Inhibition in the Clinic: Present and Future.
Topics: Antineoplastic Agents; Colonic Neoplasms; Drug Resistance, Neoplasm; Humans; Imidazoles; Indoles; MAP Kinase Signaling System; Melanoma; Mitogen-Activated Protein Kinase Kinases; Niacinamide; Oximes; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Sorafenib; Sulfonamides; Thyroid Neoplasms; Vemurafenib | 2016 |
AKT is critically involved in the antagonism of BRAF inhibitor sorafenib against dabrafenib in colorectal cancer cells harboring both wild-type and mutant (V600E) BRAF genes.
Topics: Antineoplastic Agents; Cell Proliferation; Colorectal Neoplasms; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Humans; Imidazoles; Mutation; Niacinamide; Oximes; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-akt; Sorafenib; Structure-Activity Relationship; Tumor Cells, Cultured | 2017 |