niacinamide has been researched along with crizotinib in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 7 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Friedrich, MJ | 1 |
Brentani, RR; Cooke, VG; Damascena, A; Duncan, MB; Kalluri, R; Keskin, D; Khan, Z; LeBleu, VS; Maeda, G; O'Connell, JT; Rocha, RM; Sugimoto, H; Teng, Y; Vong, S; Xie, L | 1 |
He, K; Yu, J; Zhang, L; Zheng, X | 1 |
de Bont, ES; den Dunnen, WF; Hoving, EW; Kampen, KR; Lourens, HJ; Meeuwsen-de Boer, TG; Scherpen, FJ; Sie, M; Zomerman, WW | 1 |
Nishio, K; Togashi, Y | 1 |
Bonsignore, R; Gentile, C; Lauria, A; Martorana, A | 1 |
Cho, E; Choi, KM; Chung, YH; Han, EH; Kang, M; Kim, B; Kim, E; Kim, JY; Shin, JH | 1 |
2 review(s) available for niacinamide and crizotinib
Article | Year |
---|---|
[Kinase inhibitors and their resistance].
Topics: Antibodies, Monoclonal, Humanized; Benzamides; Biomarkers, Tumor; Crizotinib; Drug Discovery; Drug Resistance, Neoplasm; ErbB Receptors; Gefitinib; Humans; Imatinib Mesylate; Indoles; Molecular Targeted Therapy; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein Kinases; Pyrazoles; Pyridines; Pyrimidines; Quinazolines; Signal Transduction; Sorafenib; Sulfonamides; Trastuzumab; Vemurafenib | 2015 |
Kinase Inhibitors in Multitargeted Cancer Therapy.
Topics: Anilides; Crizotinib; Humans; Imatinib Mesylate; Imidazoles; Indoles; Neoplasms; Niacinamide; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Pyrazoles; Pyridazines; Pyridines; Pyrroles; Quinazolines; Receptor Protein-Tyrosine Kinases; Sorafenib; Sunitinib | 2017 |
5 other study(ies) available for niacinamide and crizotinib
Article | Year |
---|---|
NSCLC drug targets acquire new visibility.
Topics: Antineoplastic Agents; Benzenesulfonates; Benzimidazoles; Bexarotene; Biomarkers, Tumor; Carcinoma, Non-Small-Cell Lung; Crizotinib; ErbB Receptors; Erlotinib Hydrochloride; Gefitinib; Humans; Lung Neoplasms; Molecular Targeted Therapy; Mutation; Niacinamide; Oncogene Proteins, Fusion; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyrazoles; Pyridines; Quinazolines; Randomized Controlled Trials as Topic; Sorafenib; Tetrahydronaphthalenes; Treatment Outcome | 2011 |
Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway.
Topics: Animals; Antineoplastic Agents; Benzamides; Benzenesulfonates; Breast Neoplasms; Cell Hypoxia; Cell Line, Tumor; Crizotinib; Epithelial-Mesenchymal Transition; Female; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Imatinib Mesylate; Indoles; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Transgenic; Neoplasm Metastasis; Niacinamide; Pericytes; Phenylurea Compounds; Piperazines; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-met; Pyrazoles; Pyridines; Pyrimidines; Pyrroles; Signal Transduction; Sorafenib; Sunitinib; Tumor Cells, Cultured | 2012 |
Crizotinib induces PUMA-dependent apoptosis in colon cancer cells.
Topics: Animals; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Cell Line, Tumor; Colonic Neoplasms; Crizotinib; Drug Synergism; Female; Gefitinib; Gene Expression Regulation, Neoplastic; Humans; Mice; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins; Pyrazoles; Pyridines; Quinazolines; Sorafenib; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assays | 2013 |
Growth-factor-driven rescue to receptor tyrosine kinase (RTK) inhibitors through Akt and Erk phosphorylation in pediatric low grade astrocytoma and ependymoma.
Topics: Apoptosis; Astrocytoma; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Crizotinib; Dasatinib; Ependymoma; Extracellular Signal-Regulated MAP Kinases; Humans; Intercellular Signaling Peptides and Proteins; Niacinamide; Phenylurea Compounds; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyrazoles; Pyridines; Signal Transduction; Sorafenib | 2015 |
Prolonged MEK inhibition leads to acquired resistance and increased invasiveness in KRAS mutant gastric cancer.
Topics: Cell Line, Tumor; Crizotinib; Drug Resistance, Neoplasm; Humans; Imidazoles; Mitogen-Activated Protein Kinase Kinases; Mutation; Neoplasm Invasiveness; Niacinamide; Phenotype; Phosphatidylinositol 3-Kinases; Phosphorylation; Phosphotyrosine; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-met; Proto-Oncogene Proteins p21(ras); Quinolines; Stomach Neoplasms; TOR Serine-Threonine Kinases | 2018 |