niacinamide and crizotinib

niacinamide has been researched along with crizotinib in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's7 (100.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Friedrich, MJ1
Brentani, RR; Cooke, VG; Damascena, A; Duncan, MB; Kalluri, R; Keskin, D; Khan, Z; LeBleu, VS; Maeda, G; O'Connell, JT; Rocha, RM; Sugimoto, H; Teng, Y; Vong, S; Xie, L1
He, K; Yu, J; Zhang, L; Zheng, X1
de Bont, ES; den Dunnen, WF; Hoving, EW; Kampen, KR; Lourens, HJ; Meeuwsen-de Boer, TG; Scherpen, FJ; Sie, M; Zomerman, WW1
Nishio, K; Togashi, Y1
Bonsignore, R; Gentile, C; Lauria, A; Martorana, A1
Cho, E; Choi, KM; Chung, YH; Han, EH; Kang, M; Kim, B; Kim, E; Kim, JY; Shin, JH1

Reviews

2 review(s) available for niacinamide and crizotinib

ArticleYear
[Kinase inhibitors and their resistance].
    Nihon rinsho. Japanese journal of clinical medicine, 2015, Volume: 73, Issue:8

    Topics: Antibodies, Monoclonal, Humanized; Benzamides; Biomarkers, Tumor; Crizotinib; Drug Discovery; Drug Resistance, Neoplasm; ErbB Receptors; Gefitinib; Humans; Imatinib Mesylate; Indoles; Molecular Targeted Therapy; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein Kinases; Pyrazoles; Pyridines; Pyrimidines; Quinazolines; Signal Transduction; Sorafenib; Sulfonamides; Trastuzumab; Vemurafenib

2015
Kinase Inhibitors in Multitargeted Cancer Therapy.
    Current medicinal chemistry, 2017, Volume: 24, Issue:16

    Topics: Anilides; Crizotinib; Humans; Imatinib Mesylate; Imidazoles; Indoles; Neoplasms; Niacinamide; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Pyrazoles; Pyridazines; Pyridines; Pyrroles; Quinazolines; Receptor Protein-Tyrosine Kinases; Sorafenib; Sunitinib

2017

Other Studies

5 other study(ies) available for niacinamide and crizotinib

ArticleYear
NSCLC drug targets acquire new visibility.
    Journal of the National Cancer Institute, 2011, Mar-02, Volume: 103, Issue:5

    Topics: Antineoplastic Agents; Benzenesulfonates; Benzimidazoles; Bexarotene; Biomarkers, Tumor; Carcinoma, Non-Small-Cell Lung; Crizotinib; ErbB Receptors; Erlotinib Hydrochloride; Gefitinib; Humans; Lung Neoplasms; Molecular Targeted Therapy; Mutation; Niacinamide; Oncogene Proteins, Fusion; Phenylurea Compounds; Piperidines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyrazoles; Pyridines; Quinazolines; Randomized Controlled Trials as Topic; Sorafenib; Tetrahydronaphthalenes; Treatment Outcome

2011
Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway.
    Cancer cell, 2012, Jan-17, Volume: 21, Issue:1

    Topics: Animals; Antineoplastic Agents; Benzamides; Benzenesulfonates; Breast Neoplasms; Cell Hypoxia; Cell Line, Tumor; Crizotinib; Epithelial-Mesenchymal Transition; Female; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Imatinib Mesylate; Indoles; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Transgenic; Neoplasm Metastasis; Niacinamide; Pericytes; Phenylurea Compounds; Piperazines; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-met; Pyrazoles; Pyridines; Pyrimidines; Pyrroles; Signal Transduction; Sorafenib; Sunitinib; Tumor Cells, Cultured

2012
Crizotinib induces PUMA-dependent apoptosis in colon cancer cells.
    Molecular cancer therapeutics, 2013, Volume: 12, Issue:5

    Topics: Animals; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Cell Line, Tumor; Colonic Neoplasms; Crizotinib; Drug Synergism; Female; Gefitinib; Gene Expression Regulation, Neoplastic; Humans; Mice; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins; Pyrazoles; Pyridines; Quinazolines; Sorafenib; Tumor Suppressor Protein p53; Xenograft Model Antitumor Assays

2013
Growth-factor-driven rescue to receptor tyrosine kinase (RTK) inhibitors through Akt and Erk phosphorylation in pediatric low grade astrocytoma and ependymoma.
    PloS one, 2015, Volume: 10, Issue:3

    Topics: Apoptosis; Astrocytoma; Brain Neoplasms; Cell Line, Tumor; Cell Movement; Crizotinib; Dasatinib; Ependymoma; Extracellular Signal-Regulated MAP Kinases; Humans; Intercellular Signaling Peptides and Proteins; Niacinamide; Phenylurea Compounds; Phosphorylation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-akt; Pyrazoles; Pyridines; Signal Transduction; Sorafenib

2015
Prolonged MEK inhibition leads to acquired resistance and increased invasiveness in KRAS mutant gastric cancer.
    Biochemical and biophysical research communications, 2018, 12-09, Volume: 507, Issue:1-4

    Topics: Cell Line, Tumor; Crizotinib; Drug Resistance, Neoplasm; Humans; Imidazoles; Mitogen-Activated Protein Kinase Kinases; Mutation; Neoplasm Invasiveness; Niacinamide; Phenotype; Phosphatidylinositol 3-Kinases; Phosphorylation; Phosphotyrosine; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-met; Proto-Oncogene Proteins p21(ras); Quinolines; Stomach Neoplasms; TOR Serine-Threonine Kinases

2018