niacinamide has been researched along with 2-(4-morpholinyl)-8-phenyl-4h-1-benzopyran-4-one in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (11.11) | 18.2507 |
2000's | 3 (33.33) | 29.6817 |
2010's | 5 (55.56) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Beattie, GM; Cirulli, V; Hayek, A; Lopez, A; Mally, MI; Ptasznik, A | 1 |
Chang, CC; Ferber, S; Linning, KD; Madhukar, BV; Olson, LK; Reed, DN; Tai, MH; Trosko, JE | 1 |
Arribas, MI; Jones, J; Leon-Quinto, T; Roche, E; Soria, B | 1 |
Flaherty, KT; Garbe, C; Kulms, D; Lasithiotakis, KG; Maczey, E; Meier, FE; Schittek, B; Sinnberg, TW | 1 |
Cohen, L; Gao, Y; Gu, K; Li, HX; Meng, ZQ; Wang, P; Xu, LT; Xu, LY; Yang, PY | 1 |
Doudican, NA; Orlow, SJ; Quay, E; Zhang, S | 1 |
Corey, SJ; Park, BJ; Whichard, ZL | 1 |
Dekervel, J; Nevens, F; Van Cutsem, E; van Malenstein, H; van Pelt, J; Verslype, C; Windmolders, P | 1 |
Cai, JB; Dong, ZR; Fan, J; Gao, DM; Gao, PT; Hu, ZQ; Huang, XY; Ke, AW; Li, KS; Shen, YH; Shi, GM; Tian, MX; Zhang, C; Zhang, PF | 1 |
1 review(s) available for niacinamide and 2-(4-morpholinyl)-8-phenyl-4h-1-benzopyran-4-one
Article | Year |
---|---|
Role of small bioorganic molecules in stem cell differentiation to insulin-producing cells.
Topics: Alkaloids; Androstadienes; Animals; Butyrates; Cell Differentiation; Chromones; Enzyme Inhibitors; Glucose; Humans; Insulin; Insulin Antagonists; Morpholines; Niacinamide; Stem Cells; Tretinoin; Wortmannin | 2006 |
8 other study(ies) available for niacinamide and 2-(4-morpholinyl)-8-phenyl-4h-1-benzopyran-4-one
Article | Year |
---|---|
Phosphatidylinositol 3-kinase is a negative regulator of cellular differentiation.
Topics: Androstadienes; Cell Differentiation; Cell Division; Chromones; DNA; Enzyme Inhibitors; Fetus; Glucagon; Hepatocyte Growth Factor; Humans; Insulin; Insulin Secretion; Islets of Langerhans; Morpholines; Niacinamide; Pancreas; Phosphatidylinositol 3-Kinases; Phosphotransferases (Alcohol Group Acceptor); Somatostatin; Wortmannin | 1997 |
Redox-mediated enrichment of self-renewing adult human pancreatic cells that possess endocrine differentiation potential.
Topics: Acetylcysteine; Adenoviridae; Adult; Albumins; alpha-Amylases; C-Peptide; Cell Aggregation; Cell Differentiation; Cell Separation; Cells, Cultured; Chromones; Culture Media; Culture Media, Serum-Free; Exenatide; Gene Expression Regulation; Genetic Vectors; Glucagon; Homeodomain Proteins; Humans; Insulin; Intermediate Filament Proteins; Intracellular Fluid; Islets of Langerhans; Morpholines; Nerve Tissue Proteins; Nestin; Niacinamide; Oxidation-Reduction; Peptides; Recombinant Fusion Proteins; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Somatostatin; Stem Cells; Trans-Activators; Transcription Factors; Venoms; Vimentin | 2004 |
Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells.
Topics: Androstadienes; Apoptosis; Benzenesulfonates; Butadienes; Cell Line, Tumor; Cell Proliferation; Chromones; Down-Regulation; Flavonoids; Humans; Mechanistic Target of Rapamycin Complex 1; Melanoma; Mitogen-Activated Protein Kinase Kinases; Morpholines; Multiprotein Complexes; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasm Invasiveness; Niacinamide; Nitriles; Phenylurea Compounds; Protein Kinase Inhibitors; Proteins; Proto-Oncogene Proteins c-bcl-2; Pyridines; Signal Transduction; Sirolimus; Skin Neoplasms; Sorafenib; TOR Serine-Threonine Kinases; Transcription Factors; Wortmannin | 2008 |
Bufalin enhances the anti-proliferative effect of sorafenib on human hepatocellular carcinoma cells through downregulation of ERK.
Topics: Antineoplastic Agents; Benzenesulfonates; Blotting, Western; Bufanolides; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Chromones; Drug Synergism; Gene Expression Regulation, Enzymologic; Humans; Liver Neoplasms; Microscopy, Electron, Transmission; Morpholines; Niacinamide; Phenylurea Compounds; Pyridines; Sorafenib | 2012 |
Fluvastatin enhances sorafenib cytotoxicity in melanoma cells via modulation of AKT and JNK signaling pathways.
Topics: Anthracenes; Benzenesulfonates; Cell Death; Cell Line, Tumor; Cell Proliferation; Chromones; Drug Screening Assays, Antitumor; Drug Synergism; Enzyme Activation; Fatty Acids, Monounsaturated; Fluvastatin; Humans; Indoles; JNK Mitogen-Activated Protein Kinases; Melanoma; Morpholines; Niacinamide; Phenylurea Compounds; Poly(ADP-ribose) Polymerases; Proto-Oncogene Proteins c-akt; Pyridines; Signal Transduction; Sorafenib | 2011 |
Dasatinib synergizes with both cytotoxic and signal transduction inhibitors in heterogeneous breast cancer cell lines--lessons for design of combination targeted therapy.
Topics: Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Breast Neoplasms; Butadienes; Cell Line, Tumor; Chromones; Dasatinib; Dose-Response Relationship, Drug; Drug Synergism; Enzyme Inhibitors; Epothilones; Female; Humans; Morpholines; Niacinamide; Nitriles; Paclitaxel; Phenylurea Compounds; Pyridines; Pyrimidines; Signal Transduction; Sirolimus; Sorafenib; Tamoxifen; Thiazoles | 2012 |
Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth.
Topics: Anilides; Antineoplastic Agents; Cadherins; Carcinoma, Hepatocellular; Cell Line, Tumor; Chromones; Drug Resistance, Neoplasm; Epithelial-Mesenchymal Transition; Gene Expression Regulation, Neoplastic; Humans; Keratin-19; Liver Neoplasms; Morpholines; Niacinamide; Phenylurea Compounds; Proto-Oncogene Proteins c-akt; Pyridines; Sorafenib; Vimentin | 2013 |
Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling.
Topics: Animals; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Chromones; Drug Resistance, Neoplasm; Epithelial-Mesenchymal Transition; Focal Adhesion Kinase 1; Galectin 1; Humans; Integrin alphaVbeta3; Liver Neoplasms; Male; Mice; Mice, Inbred C57BL; Mice, Nude; Morpholines; Neoplasm Invasiveness; Niacinamide; Phenylurea Compounds; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; RNA Interference; Signal Transduction; Sorafenib; Survival Rate | 2016 |