niacin and fk 866
niacin has been researched along with fk 866 in 7 studies
Research
Studies (7)
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (14.29) | 29.6817 |
2010's | 5 (71.43) | 24.3611 |
2020's | 1 (14.29) | 2.80 |
Authors
Authors | Studies |
---|---|
Hasmann, M; Schemainda, I | 1 |
Jensen, PB; Olesen, UH; Sehested, M; Thougaard, AV | 1 |
Felding-Habermann, B; Gay, LJ; LeBoeuf, SE; Matsuno-Yagi, A; Ritland, M; Santidrian, AF; Seo, BB; Yagi, T | 1 |
Acharya, C; Acharya, P; Adamia, S; Ballestrero, A; Bergamaschi, M; Bruzzone, S; Caffa, I; Cagnetta, A; Cea, M; Damonte, G; Fraternali, G; Garuti, A; Gobbi, M; Mastracci, L; Montecucco, F; Nencioni, A; Patrone, F; Pierri, I; Provenzani, A; Salis, A; Soncini, D; Zucal, C | 1 |
Chen, MY; Hu, ML; Song, TY; Yang, NC; Yeh, SL | 1 |
Deng, H; Hu, Y; Wang, Q; Wang, W; Wang, X | 1 |
Ito, K; Ito, S; Kawai, M; Kudo, K; Morita, M; Nomura, M; Sakamoto, Y; Shima, H; Tanuma, N; Yaegashi, N; Yamada, H; Yamashita, Y | 1 |
Other Studies
7 other study(ies) available for niacin and fk 866
Article | Year |
---|---|
FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis.
Topics: Acrylamides; Adenosine Triphosphate; Antineoplastic Agents; Apoptosis; Carcinoma, Hepatocellular; Cell Line, Tumor; Enzyme Inhibitors; Humans; K562 Cells; Kinetics; Liver Neoplasms; Mitochondria, Liver; NAD; Niacin; Niacinamide; Nicotinamide Phosphoribosyltransferase; Oxygen Consumption; Pentosyltransferases; Piperidines | 2003 |
A preclinical study on the rescue of normal tissue by nicotinic acid in high-dose treatment with APO866, a specific nicotinamide phosphoribosyltransferase inhibitor.
Topics: Acrylamides; Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Biomarkers, Tumor; Cell Death; Cell Line, Tumor; Cytoprotection; Dose-Response Relationship, Drug; Gene Expression Regulation, Enzymologic; Humans; Maximum Tolerated Dose; Mice; NAD; Niacin; Nicotinamide Phosphoribosyltransferase; Organ Specificity; Piperidines; RNA, Messenger; Substrate Specificity; Xenograft Model Antitumor Assays | 2010 |
Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression.
Topics: Acrylamides; Animals; Autophagy; Autophagy-Related Protein 5; Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Cytokines; Disease Progression; Electron Transport Complex I; Female; Gene Knockdown Techniques; Humans; Lung Neoplasms; Mammary Neoplasms, Experimental; Mechanistic Target of Rapamycin Complex 1; Mice; Mice, Inbred BALB C; Mice, SCID; Microtubule-Associated Proteins; Mitochondria; Multiprotein Complexes; NAD; Neoplasm Transplantation; Niacin; Niacinamide; Nicotinamide Phosphoribosyltransferase; Piperidines; Protein Transport; Proteins; Recombinant Proteins; Saccharomyces cerevisiae Proteins; TOR Serine-Threonine Kinases | 2013 |
APO866 Increases Antitumor Activity of Cyclosporin-A by Inducing Mitochondrial and Endoplasmic Reticulum Stress in Leukemia Cells.
Topics: Acrylamides; Adenosine Triphosphate; Aged; Antineoplastic Agents; Apoptosis; ATP Binding Cassette Transporter, Subfamily B; Cell Line, Tumor; Cell Survival; Chromosome Aberrations; Cyclosporine; Drug Resistance, Neoplasm; Drug Synergism; Endoplasmic Reticulum Stress; Female; Gene Expression; Humans; Immunoglobulin Heavy Chains; Leukemia; Male; Membrane Potential, Mitochondrial; Middle Aged; Mitochondria; Mutation; NAD; Neoplasm Staging; Niacin; Niacinamide; Nicotinamide Phosphoribosyltransferase; Piperidines; Primary Cell Culture; Prognosis; Tumor Cells, Cultured; Unfolded Protein Response | 2015 |
A Nampt inhibitor FK866 mimics vitamin B3 deficiency by causing senescence of human fibroblastic Hs68 cells via attenuation of NAD(+)-SIRT1 signaling.
Topics: Acrylamides; AMP-Activated Protein Kinases; Cell Line; Cell Proliferation; Cellular Senescence; Cytokines; Enzyme Inhibitors; Fibroblasts; Glutathione; Humans; NAD; NADP; Niacin; Niacinamide; Nicotinamide Phosphoribosyltransferase; Piperidines; Signal Transduction; Sirtuin 1; TOR Serine-Threonine Kinases; Tumor Suppressor Protein p53 | 2015 |
ROS-Mediated 15-Hydroxyprostaglandin Dehydrogenase Degradation via Cysteine Oxidation Promotes NAD
Topics: Acrylamides; ADP-ribosyl Cyclase 1; Autophagy; Cell Line, Tumor; Cell Movement; Cysteine; Dinoprostone; Epithelial-Mesenchymal Transition; Gene Expression Regulation, Neoplastic; Humans; Hydroxyprostaglandin Dehydrogenases; Membrane Glycoproteins; Mutagenesis, Site-Directed; NAD; Niacin; Oxidation-Reduction; Piperidines; Proteasome Endopeptidase Complex; Protein Stability; Reactive Oxygen Species; Sulfonic Acids | 2018 |
Divergent metabolic responses dictate vulnerability to NAMPT inhibition in ovarian cancer.
Topics: Acrylamides; Cell Line, Tumor; Cytokines; Female; Glycolysis; Humans; Lactic Acid; NAD; Niacin; Nicotinamide Phosphoribosyltransferase; Ovarian Neoplasms; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors | 2020 |