nevirapine and sulfaphenazole

nevirapine has been researched along with sulfaphenazole in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's2 (33.33)24.3611
2020's4 (66.67)2.80

Authors

AuthorsStudies
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY1
Arnold, E; De Clercq, E; Fang, Z; Feng, D; Kang, D; Liu, X; Pannecouque, C; Pilch, A; Ruiz, FX; Sun, Y; Wang, Z; Wei, F; Zhan, P; Zhao, T1
Chen, FE; De Clercq, E; Ding, L; Pannecouque, C; Zhuang, C2
Chen, FE; De Clercq, E; Huang, WJ; Jin, X; Pannecouque, C; Wang, S; Zhang, YX; Zhao, LM1

Other Studies

6 other study(ies) available for nevirapine and sulfaphenazole

ArticleYear
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
    Chemical research in toxicology, 2012, Oct-15, Volume: 25, Issue:10

    Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding

2012
Discovery and Characterization of Fluorine-Substituted Diarylpyrimidine Derivatives as Novel HIV-1 NNRTIs with Highly Improved Resistance Profiles and Low Activity for the hERG Ion Channel.
    Journal of medicinal chemistry, 2020, 02-13, Volume: 63, Issue:3

    Topics: Animals; Anti-HIV Agents; Cell Line; Crystallography, X-Ray; Drug Discovery; ERG1 Potassium Channel; Female; Fluorine; HIV Reverse Transcriptase; HIV-1; Humans; Male; Mice; Microsomes, Liver; Molecular Structure; Protein Binding; Pyrimidines; Rats, Wistar; Reverse Transcriptase Inhibitors; Structure-Activity Relationship; Thiophenes

2020
Improving Druggability of Novel Diarylpyrimidine NNRTIs by a Fragment-Based Replacement Strategy: From Biphenyl-DAPYs to Heteroaromatic-Biphenyl-DAPYs.
    Journal of medicinal chemistry, 2021, 07-22, Volume: 64, Issue:14

    Topics: Animals; Anti-HIV Agents; Dose-Response Relationship, Drug; Female; HIV Reverse Transcriptase; HIV-1; Humans; Male; Mice; Microbial Sensitivity Tests; Microsomes, Liver; Models, Molecular; Molecular Structure; Pyrimidines; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Inhibitors; Structure-Activity Relationship

2021
Discovery of Novel Pyridine-Dimethyl-Phenyl-DAPY Hybrids by Molecular Fusing of Methyl-Pyrimidine-DAPYs and Difluoro-Pyridinyl-DAPYs: Improving the Druggability toward High Inhibitory Activity, Solubility, Safety, and PK.
    Journal of medicinal chemistry, 2022, 02-10, Volume: 65, Issue:3

    Topics: Animals; Anti-HIV Agents; Binding Sites; Cell Survival; Cytochrome P-450 Enzyme System; Drug Design; Drug Resistance, Viral; Drug Stability; Female; Half-Life; HIV Reverse Transcriptase; HIV-1; Humans; Mice; Molecular Docking Simulation; Mutation; Pyridines; Pyrimidines; Solubility; Structure-Activity Relationship

2022
Structure-Based Discovery of Novel NH
    Journal of medicinal chemistry, 2022, 06-23, Volume: 65, Issue:12

    Topics: Anti-HIV Agents; Biphenyl Compounds; Drug Design; Heterocyclic Compounds, 1-Ring; HIV Reverse Transcriptase; HIV-1; Pyrimidines; Reverse Transcriptase Inhibitors; Structure-Activity Relationship

2022