neuropeptide-y and senktide

neuropeptide-y has been researched along with senktide* in 3 studies

Other Studies

3 other study(ies) available for neuropeptide-y and senktide

ArticleYear
Inflammation and inflammatory agents activate protein kinase C epsilon translocation and excite guinea-pig submucosal neurons.
    Gastroenterology, 2007, Volume: 133, Issue:4

    Properties of enteric neurons are transformed by inflammation and protein kinase C (PKC) isoforms are involved both in long-term changes in enteric neurons, and in transducing the effects of substances released during inflammation. We investigated roles of PKCepsilon in submucosal neurons by studying translocation in response to inflammatory mediators, effects on neuron excitability, and the changes in PKCepsilon distribution in a trinitrobenzene sulphonate model of ileitis.. Immunohistochemical detection and analysis of association with membrane and cytosolic fractions, and Western blot analysis of cytosolic and particulate fractions were used to quantify translocation. Electrophysiology methods were used to measure effects on neuron excitability.. All submucosal neurons were immunoreactive for the novel PKC, PKCepsilon, and direct PKC activators, phorbol 12,13-dibutyrate, ingenol 3,20-dibenzoate, and the PKCepsilon-specific activator, transactivator of transduction-Psiepsilon receptor for activated C kinase, all caused PKCepsilon translocation from cytoplasm to surfaces of the neurons. Electrophysiologic studies showed that the stimulant of novel PKCs, ingenol (1 micromol/L), increased excitability of all neurons. Stimulation of protease-activated receptors caused PKCepsilon translocation selectively in vasoactive intestinal peptide secretomotor neurons, whereas a neurokinin 3 tachykinin receptor agonist caused translocation in neuropeptide Y and calretinin neurons. In all cases translocation was reduced significantly by a PKCepsilon-specific translocation inhibitor peptide. Increased PKCepsilon at the plasma membrane occurred in all neurons 6-7 days after an inflammatory stimulus.. Major targets for PKCepsilon include ion channels near the plasma membrane. PKCepsilon is likely to have a significant role in controlling the excitability of submucosal neurons and is probably an intermediate in causing hyperexcitability after inflammation.

    Topics: Action Potentials; Animals; Blotting, Western; Calbindin 2; Cell Membrane; Cytoplasm; Disease Models, Animal; Diterpenes; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Activators; Guinea Pigs; Ileitis; Ileum; In Vitro Techniques; Inflammation Mediators; Kinetics; Neuropeptide Y; Oligopeptides; Peptide Fragments; Phorbol 12,13-Dibutyrate; Protein Kinase C-epsilon; Protein Transport; Receptor, PAR-2; Receptors, Neurokinin-3; S100 Calcium Binding Protein G; Signal Transduction; Submucous Plexus; Substance P; Trinitrobenzenesulfonic Acid; Trypsin; Vasoactive Intestinal Peptide

2007
GABAergic basal forebrain neurons that express receptor for neurokinin B and send axons to the cerebral cortex.
    The Journal of comparative neurology, 2004, May-17, Volume: 473, Issue:1

    Neurons expressing neurokinin B (NK3) receptor in the basal forebrain region of rats were characterized histochemically by combining immunocytochemistry, in situ hybridization and retrograde labeling, and electrophysiologically by whole-cell clamp recording. NK3 receptor-immunoreactive neurons were found in the basal forebrain region including the substantia innominata, where axon terminals immunoreactive for preprotachykinin B, the precursor peptide of neurokinin B (NKB), were densely distributed. More than 90% of NK3 receptor-expressing neurons in the basal forebrain region showed signals for glutamate decarboxylase mRNA, indicating that almost all NK3 receptor-expressing neurons were gamma-aminobutyric acid (GABA)ergic neurons. On the other hand, only a few NK3 receptor-immunoreactive neurons showed immunoreactivity for choline acetyltransferase or parvalbumin in the substantia innominata, ventral pallidum, and globus pallidus, although the distribution of NK3 receptor-expressing neurons overlapped with those of cholinergic neurons and parvalbumin-positive neurons. After injection of wheat germ agglutinin into the cerebral cortex, NK3 receptor immunoreactivity was detected in about 25% of retrogradely labeled basal forebrain neurons, indicating that NK3 receptor-expressing neurons send projection fibers to the cerebral cortex. In the whole-cell clamp recording study, a selective NK3 receptor agonist evoked membrane depolarization or inward currents with decrease of input impedance in 10 of 100 cortically projecting neurons recorded in the basal forebrain region. Because NKB-producing striatal neurons send axons selectively to the basal forebrain region, the present results suggest that the release of NKB by those striatal neurons induces an inhibitory effect on cortical neurons via facilitation of GABAergic basal forebrain neurons expressing NK3 receptor.

    Topics: Animals; Animals, Newborn; Axons; Calbindin 2; Calbindins; Cell Count; Cerebral Cortex; Cholera Toxin; Choline O-Acetyltransferase; gamma-Aminobutyric Acid; Glutamate Decarboxylase; Immunoenzyme Techniques; Immunohistochemistry; In Situ Hybridization; In Vitro Techniques; Isoenzymes; Male; Membrane Potentials; Neurons; Neuropeptide Y; Parvalbumins; Patch-Clamp Techniques; Peptide Fragments; Polypyrimidine Tract-Binding Protein; Prosencephalon; Pyrrolidonecarboxylic Acid; Rats; Rats, Wistar; Receptors, Neurokinin-3; S100 Calcium Binding Protein G; Somatostatin; Substance P; Wheat Germ Agglutinin-Horseradish Peroxidase Conjugate

2004
Central injection of senktide, an NK3 receptor agonist, or neuropeptide Y inhibits LH secretion and induces different patterns of Fos expression in the rat hypothalamus.
    Brain research, 2004, Nov-12, Volume: 1026, Issue:2

    Arcuate neurokinin B (NKB) neurons express estrogen receptor-alpha and are strongly modulated by gonadal steroids. Although numerous studies suggest that NKB neurons participate in the reproductive axis, there is no information on the regulation of luteinizing hormone (LH) secretion by NKB or its receptor, NK3. In the present study, we determined if central injection of senktide, a selective NK3 receptor agonist, would alter serum LH in ovariectomized, estrogen-primed rats. The effects of senktide were compared to neuropeptide Y (NPY), a well-characterized modulator of LH secretion. Saline, senktide, or NPY was injected into the lateral ventricle of unanesthetized rats and serial blood samples were collected for LH radioimmunoassay. The rats were sacrificed 90 min after injection and the brains were removed and processed for Fos immunocytochemistry. A significant inhibition of serum LH was observed from 30 to 90 min after injection of senktide relative to saline controls. In the senktide-injected rats, the inhibition of serum LH was accompanied by increased Fos expression in the medial preoptic area and arcuate nucleus--two reproductive control centers. Senktide also induced Fos in the paraventricular nuclei (PVN) and supraoptic nuclei (SON). Injection of NPY also inhibited serum LH but increased Fos expression only in the PVN and SON. This study provides the first demonstration of alterations in LH secretion by an NK3 receptor agonist. These data, combined with the induction of Fos in medial preoptic and arcuate neurons, strongly support the hypothesis that NKB neurons play a role in the regulation of gonadotropin secretion.

    Topics: Animals; Drug Interactions; Estrogens; Female; Gene Expression Regulation; Hypothalamus; Immunohistochemistry; Injections, Intraventricular; Luteinizing Hormone; Neuropeptide Y; Oncogene Proteins v-fos; Ovariectomy; Peptide Fragments; Radioimmunoassay; Rats; Rats, Sprague-Dawley; Receptors, Neurokinin-3; Substance P; Time Factors

2004