neuropeptide-y has been researched along with glyceryl-2-arachidonate* in 4 studies
4 other study(ies) available for neuropeptide-y and glyceryl-2-arachidonate
Article | Year |
---|---|
Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons.
Acute or chronic alterations in energy status alter the balance between excitatory and inhibitory synaptic transmission and associated synaptic plasticity to allow for the adaptation of energy metabolism to new homeostatic requirements. The impact of such changes on endocannabinoid and cannabinoid receptor type 1 (CB1)-mediated modulation of synaptic transmission and strength is not known, despite the fact that this signaling system is an important target for the development of new drugs against obesity. We investigated whether CB1-expressing excitatory vs. inhibitory inputs to orexin-A-containing neurons in the lateral hypothalamus are altered in obesity and how this modifies endocannabinoid control of these neurons. In lean mice, these inputs are mostly excitatory. By confocal and ultrastructural microscopic analyses, we observed that in leptin-knockout (ob/ob) obese mice, and in mice with diet-induced obesity, orexinergic neurons receive predominantly inhibitory CB1-expressing inputs and overexpress the biosynthetic enzyme for the endocannabinoid 2-arachidonoylglycerol, which retrogradely inhibits synaptic transmission at CB1-expressing axon terminals. Patch-clamp recordings also showed increased CB1-sensitive inhibitory innervation of orexinergic neurons in ob/ob mice. These alterations are reversed by leptin administration, partly through activation of the mammalian target of rapamycin pathway in neuropeptide-Y-ergic neurons of the arcuate nucleus, and are accompanied by CB1-mediated enhancement of orexinergic innervation of target brain areas. We propose that enhanced inhibitory control of orexin-A neurons, and their CB1-mediated disinhibition, are a consequence of leptin signaling impairment in the arcuate nucleus. We also provide initial evidence of the participation of this phenomenon in hyperphagia and hormonal dysregulation in obesity. Topics: Animals; Arachidonic Acids; Arcuate Nucleus of Hypothalamus; Endocannabinoids; Glycerides; Hypothalamus; Intracellular Signaling Peptides and Proteins; Leptin; Male; Membrane Potentials; Mice; Mice, Inbred C57BL; Mice, Obese; Microscopy, Confocal; Microscopy, Electron; Neurons; Neuropeptide Y; Neuropeptides; Obesity; Orexins; Receptor, Cannabinoid, CB1; Signal Transduction; Synaptic Transmission; TOR Serine-Threonine Kinases | 2013 |
Over-expression of monoacylglycerol lipase (MGL) in small intestine alters endocannabinoid levels and whole body energy balance, resulting in obesity.
The function of small intestinal monoacylglycerol lipase (MGL) is unknown. Its expression in this tissue is surprising because one of the primary functions of the small intestine is to convert diet-derived MGs to triacylglycerol (TG), and not to degrade them. To elucidate the function of intestinal MGL, we generated transgenic mice that over-express MGL specifically in small intestine (iMGL mice). After only 3 weeks of high fat feeding, iMGL mice showed an obese phenotype; body weight gain and body fat mass were markedly higher in iMGL mice, along with increased hepatic and plasma TG levels compared to wild type littermates. The iMGL mice were hyperphagic and displayed reduced energy expenditure despite unchanged lean body mass, suggesting that the increased adiposity was due to both increased caloric intake and systemic effects resulting in a hypometabolic rate. The presence of the transgene resulted in lower levels of most MG species in intestinal mucosa, including the endocannabinoid 2-arachidonoyl glycerol (2-AG). The results therefore suggest a role for intestinal MGL, and intestinal 2-AG and perhaps other MG species, in whole body energy balance via regulation of food intake as well as metabolic rate. Topics: Adiposity; Agouti-Related Protein; Animals; Appetite; Arachidonic Acids; Basal Metabolism; Brain; Eating; Endocannabinoids; Energy Metabolism; Glycerides; Intestine, Small; Mice; Mice, Transgenic; Monoacylglycerol Lipases; Neuropeptide Y; Obesity; Polyunsaturated Alkamides; Pro-Opiomelanocortin; Receptor, Cannabinoid, CB1; Triglycerides | 2012 |
Anandamide and AM251, via water, modulate food intake at central and peripheral level in fish.
The endocannabinoid system is a major regulator of food intake in many animal species. Studies conducted so far have mostly focused on mammals, and, therefore, in this study, the role of the endocannabinoid system in food intake in the sea bream Sparus aurata was investigated. The effect of different doses of the endocannabinoid anandamide (AEA), administered via water, was evaluated after different exposure times (30, 60 and 120 min) at both physiological and molecular levels. The results obtained indicate that fish exposed to AEA via water present approximately 1000-fold higher levels of AEA in both the brain and liver, which correlated with a significant increase in food intake and with the elevation of cannabinoid receptor 1 (CB(1)) and neuropeptide Y (NPY) mRNA levels in the brain. A peripheral effect of AEA was also observed, since a time-dependent increase in hepatic CB(1) mRNA and protein levels was detected. These effects were attenuated by the administration, again via water, of a selective cannabinoid CB(1) receptor antagonist (AM251). These findings indicate that the endocannabinoid AEA, at doses that stimulate food intake in fish, concomitantly stimulates the expression of the orexigenic peptide NPY as well that of its own receptor, thereby potentially enhancing its effect on food consumption. In agreement with a role of AEA in food intake in S. aurata, we found increased brain levels of both this and the other endocannabinoid, 2-arachidonoylglycerol (2-AG), following food deprivation. Topics: Animals; Arachidonic Acids; Brain Chemistry; Cannabinoid Receptor Modulators; Eating; Endocannabinoids; Food Deprivation; Glycerides; Liver; Neuropeptide Y; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; RNA, Messenger; Sea Bream; Water | 2010 |
CB1 receptor blockade reduces the anxiogenic-like response and ameliorates the neurochemical imbalances associated with alcohol withdrawal in rats.
There is strong evidence that blocking CB1 receptors may reduce alcohol intake in alcohol-dependent individuals. However, there is still limited evidence that CB1 receptor antagonists may also be beneficial in the attenuation of alcohol withdrawal syndrome, even though alcohol withdrawal appears to be milder in CB1 receptor knockout mice. Here we have examined whether the CB1 receptor antagonist rimonabant (SR141716) can alleviate the behavioral symptoms and revert the neurochemical imbalance elicited by a 3-h interruption of chronic alcohol exposure (7.2% in the drinking water for 10 days) in male Wistar rats. Administration of rimonabant attenuated the strong anxiogenic traits of the animals that developed when regular alcohol intake was interrupted. This may reflect the correction of the GABA/glutamate imbalances developed by the animals that received rimonabant in various brain regions involved in emotional (e.g. prefrontal cortex) and motor (e.g. caudate-putamen and globus pallidus) responses. In addition, rimonabant also affected the dopamine deficits generated by alcohol abstinence in the amygdala and ventral-tegmental area, albeit to a lesser extent. However, this antagonist was unable to correct the impairment caused by alcohol abstinence in serotonin and neuropeptide Y. The endocannabinoid activity in the brain of alcohol-abstinent rats indicated that the behavioral and neurochemical improvements caused by rimonabant were not related to the attenuation of a possible increase in this activity generated by alcohol withdrawal. Conversely, the density of CB1 receptors was reduced in alcohol-abstinent animals (e.g. globus pallidus, substantia nigra), as were the levels of endocannabinoids and related N-acylethanolamines (e.g. amygdala, caudate-putamen). Thus, rimonabant possibly enhances an endogenous response generated by interrupting the regular use of alcohol. In summary, rimonabant might attenuate withdrawal symptoms associated with alcohol abstinence, an effect that was presumably due to the normalization of GABA and glutamate, and to a lesser extent, dopamine transmission in emotion- and motor-related areas. Topics: Animals; Anxiety; Appetite; Arachidonic Acids; Autoradiography; Benzoxazines; Brain Chemistry; Cannabinoid Receptor Modulators; Central Nervous System Depressants; Chromatography, High Pressure Liquid; Emotions; Endocannabinoids; Enkephalins; Ethanol; Ethanolamines; Glycerides; In Situ Hybridization; Male; Morpholines; Motor Activity; Naphthalenes; Neuropeptide Y; Neurotransmitter Agents; Piperidines; Polyunsaturated Alkamides; Protein Precursors; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Rimonabant; RNA, Messenger; Stress, Psychological; Substance Withdrawal Syndrome | 2008 |