neuropeptide-y and galantide

neuropeptide-y has been researched along with galantide* in 2 studies

Other Studies

2 other study(ies) available for neuropeptide-y and galantide

ArticleYear
Morphological and pharmacological evidence for neuropeptide Y-galanin interaction in the rat hypothalamus.
    Endocrinology, 1996, Volume: 137, Issue:7

    Galanin (GAL) and neuropeptide Y (NPY) have been shown to play important roles in the regulation of pituitary hormone secretion, as well as ingestive and sexual behaviors, by acting within the hypothalamus. While the mechanism of action of these regulatory peptides is under intensive investigation, less attention has been paid to the possible interaction between them in influencing these central regulatory processes. Because NPY and GAL augment pituitary gonadotropin release, the present study was undertaken to evaluate the nature of morphological and functional relationships between these excitatory hypothalamic peptidergic systems. Double immunolabeling for NPY and GAL was carried out on vibratome sections taken from the hypothalamus of colchicine-pretreated female rats. Avidinbiotin peroxidase technique and a dark blue diaminobenzidine reaction was used to visualize NPY profiles, while the GAL neurons were labeled with a light brown diaminobenzidine reaction using either the avidin-biotin peroxidase or the peroxidase antiperoxidase technique. Light microscopic examination of the immunostained material showed that in the arcuate nucleus, paraventricular nucleus, supraoptic nucleus, anterior hypothalamus, and medial preoptic area, an abundant network of NPY-immunoreactive axons surrounded GAL-immunostained cells. Numerous dark blue NPY-containing putative boutons were observed in close proximity to GAL-immunolabeled cell bodies and dendrites. Correlated light and electron microscopic examination revealed that most of the immunoreactive NPY axon terminals established synaptic connections with GAL-expressing cells. Synaptic connections were most frequently found in the medial preoptic area and in the magnocellular region of the paraventricular nucleus and arcuate nucleus. Fewer connections were observed in the supraoptic nucleus. These morphological observations demonstrate the existence of a strong NPY input to hypothalamic GAL neurons, thereby suggesting a modulatory role for NPY in monitoring GAL release. To evaluate the functional relevance of this anatomical relationship, the effects of intraventricular injection of a GAL receptor antagonist, galantide, were examined on NPY-induced LH release in ovarian steroid-primed ovariectomized rats. As expected, intraventricular injection of NPY readily stimulated LH release. Although, while on its own, galantide was ineffective in altering basal LH release, it markedly attenuated the NPY-induced LH response, th

    Topics: Analysis of Variance; Animals; Arcuate Nucleus of Hypothalamus; Axons; Cerebral Ventricles; Colchicine; Dendrites; Estradiol; Estrus; Female; Galanin; Hypothalamus; Hypothalamus, Anterior; Immunoenzyme Techniques; Immunohistochemistry; Luteinizing Hormone; Microscopy, Immunoelectron; Neurons; Neuropeptide Y; Ovariectomy; Paraventricular Hypothalamic Nucleus; Preoptic Area; Progesterone; Rats; Rats, Sprague-Dawley; Signal Transduction; Substance P; Supraoptic Nucleus

1996
Effect of three galanin antagonists on the pressor response to galanin in the Cane toad, Bufo marinus.
    Regulatory peptides, 1996, Dec-17, Volume: 67, Issue:3

    Galanin is a neuropeptide that causes a marked pressor response in several non-mammalian vertebrate species, and some marsupials. In this study, the effect of three galanin antagonists were tested on the pressor response to an intravenous dose (6.3 nmol/kg) of porcine galanin in anaesthetised Cane toads, Bufo marinus. Antagonists were injected at either 20 or 50 times the molar dose (x MD) of galanin. The antagonist, C7 (Galanin 1-13-spantide) reduced the pressor effect of galanin by 32.2 +/- 6.0% when delivered at 20 x MD (n = 4) and by 42.9 +/- 15.7% when delivered at 50 x MD (n = 4) of galanin, the response recovering within 30 min. A second antagonist, M32a (Galanin 1-13-NPY 24-36) had no effect on the pressor response to galanin at 20 x MD (n = 4), but significantly reduced the pressor effect by 54.8 +/- 6.4% at 50 x MD (n = 5), which also recovered within 30 min. Administration of a third antagonist, galantide or M15 (Galanin 1-13-Substance P5-11), resulted in a profound drop in blood pressure, and did not affect the response to galanin at either dose. In conclusion, C7 and M32a are effective, short-term antagonists of the blood pressure effects of galanin in the toad.

    Topics: Animals; Blood Pressure; Bufo marinus; Galanin; Heart Rate; Neuropeptide Y; Peptide Fragments; Recombinant Fusion Proteins; Substance P; Swine; Vasoconstrictor Agents

1996