neuropeptide-f and proctolin
neuropeptide-f has been researched along with proctolin* in 6 studies
Other Studies
6 other study(ies) available for neuropeptide-f and proctolin
Article | Year |
---|---|
In silico cloning of genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors in a spider mite.
The genome of the spider mite was prospected for the presence of genes coding neuropeptides, neurohormones and their putative G-protein coupled receptors. Fifty one candidate genes were found to encode neuropeptides or neurohormones. These include all known insect neuropeptides and neurohormones, with the exception of sulfakinin, corazonin, neuroparsin and PTTH. True orthologs of adipokinetic hormone (AKH) were neither found, but there are three genes encoding peptides similar in structure to both AKH and the AKH-corazonin-related peptide. We were also unable to identify the precursors for pigment dispersing factor (PDF) or the recently discovered trissin. However, the spider mite probably does have such genes, as we found their putative receptors. A novel arthropod neuropeptide gene was identified that shows similarity to previously described molluscan neuropeptide genes and was called EFLamide. A total of 65 putative neuropeptide GPCR genes were also identified, of these 58 belong to the A-family and 7 to the B-family. Phylogenetic analysis showed that 50 of them are closely related to insect GPCRs, which allowed the identification of their putative ligand in 39 cases with varying degrees of certainty. Other spider mite GPCRs however have no identifiable orthologs in the genomes of the four holometabolous insect species best analyzed. Whereas some of the latter have orthologs in hemimetabolous insect species, crustaceans or ticks, for others such arthropod homologs are currently unknown. Topics: Amino Acid Sequence; Animals; Arthropod Proteins; Insect Hormones; Insulins; Invertebrate Hormones; Molecular Sequence Data; Nerve Tissue Proteins; Neuropeptides; Neurotransmitter Agents; Oligopeptides; Receptors, G-Protein-Coupled; Tetranychidae | 2012 |
Genomic analyses of the Daphnia pulex peptidome.
Genome mining has provided a valuable tool for peptide discovery in many species, yet no crustacean has undergone this analysis. Currently, the only crustacean with a sequenced genome is the cladoceran Daphnia pulex, a model organism in many fields of biology. Here, we have mined the D. pulex genome for peptide-encoding genes. For each gene identified, the encoded precursor protein was deduced, and its mature peptides predicted. Twenty-four peptide-encoding genes were identified, including ones predicted to produce members of the A-type allatostatin, B-type allatostatin, C-type allatostatin, allatotropin (ATR), bursicon α, bursicon β, calcitonin-like diuretic hormone, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone, ecdysis-triggering hormone, eclosion hormone (EH), insulin-like peptide (ILP), molt-inhibiting hormone, neuropeptide F, orcokinin (two genes), pigment-dispersing hormone, proctolin, red pigment concentrating hormone/adipokinetic hormone (RPCH/AKH), short neuropeptide F, SIFamide, sulfakinin, and tachykinin-related peptide (TRP) families/subfamilies. In total, 96 peptides were predicted from these genes. Our identification of isoforms of corazonin, EH, ILP, proctolin, RPCH/AKH, sulfakinin and TRP are the first for D. pulex, while our prediction of ATR from this species is the first from any crustacean. The number of peptides predicted in our study shows the power of genome mining for peptide discovery, and provides a model for future genomic analyses of the peptidomes of other crustaceans. In addition, the data presented in our study provide foundations for future molecular, biochemical, anatomical, and physiological investigation of peptidergic signaling in D. pulex and other cladoceran species. Topics: Animals; Daphnia; Genome; Invertebrate Hormones; Neuropeptides; Oligopeptides | 2011 |
In silico analyses of peptide paracrines/hormones in Aphidoidea.
The Aphidoidea is an insect superfamily comprising most of the known aphid species. While small in size, these animals are of considerable economic importance as many members of this taxon are serious agricultural pests, inflicting physical damage upon crop plants and serving as vectors in the transmission of viral plant diseases. In terms of identifying the paracrines/hormones used to modulate behavior, particularly peptides, members of the Aphidoidea have largely been ignored, as it is not tractable to isolate the large pools of tissue needed for standard biochemical investigations. Here, a bioinformatics approach to peptide discovery has been used to overcome this limitation of scale. Specifically, in silico searches of publicly accessible aphidoidean ESTs were conducted to identify transcripts encoding putative peptides precursors, with the mature peptides contained within them deduced using peptide processing software and homology to known arthropod sequences. In total, 39 ESTs encoding putative peptides precursors were identified from four aphid species: Acyrthosiphon pisum (14 ESTs), Aphis gossypii (four ESTs), Myzus persicae (20 ESTs) and Toxoptera citricida (one EST). These precursors included ones predicted to encode isoforms of B-type allatostatin, crustacean cardioactive peptide, FMRFamide-related peptide (both myosuppressin and short neuropeptide F subfamilies), insect kinin, orcokinin, proctolin, pyrokinin/periviscerokinin/pheromone biosynthesis activating neuropeptide, SIFamide and tachykinin-related peptide. In total, 83 peptides were characterized from the identified precursors, most novel, including two B-type allatostatins possessing the variant -WX(7)Wamide motif, two N-terminally extended proctolin isoforms and an N-terminally truncated and substituted SIFamide. Collectively, these results expand greatly the number of known/predicted aphid peptide paracrines/hormones, and provide a strong foundation for future molecular and physiological investigations of peptidergic control in this insect group. Topics: Amino Acid Sequence; Animals; Aphids; Computational Biology; Expressed Sequence Tags; FMRFamide; Insect Hormones; Molecular Sequence Data; Neuropeptides; Oligopeptides; Peptide Hormones; Sequence Homology, Amino Acid; Tachykinins | 2008 |
Neuropeptide discovery in Ixodoidea: an in silico investigation using publicly accessible expressed sequence tags.
The Ixodoidea (ticks) are important vectors in the transmission of many human diseases; for example, the blacklegged tick Ixodes scapularis is the major vector in the transmission of Lyme disease, the most frequently reported vector-borne illness in the United States. The development of expressed sequence tags (ESTs) for ixodoidean cDNA libraries, and their public deposition, has generated a rich resource for protein discovery in members of this taxon, thereby providing an opportunity for better understanding the physiology and behavior of these disease vectors. Here, in silico searches of publicly accessible ESTs were conducted to identify transcripts encoding putative ixodoidean neuropeptide precursors, with the mature peptides contained within them predicted using online peptide processing programs and homology to known arthropod sequences. In total, 37 putative neuropeptide-encoding ESTs were identified from three ixodoidean species: I. scapularis (29 ESTs), Rhipicephalus microplus (seven ESTs) and Amblyomma americanum (one EST). Among those identified from I. scapularis were ones predicted to encode isoforms of corazonin, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone (both calcitonin- and corticotropin-releasing factor-like), FMRFamide-related peptide (both short neuropeptide F and sulfakinin subfamilies) orcokinin, proctolin, pyrokinin/periviscerokinin/pheromone biosynthesis activating neuropeptide, SIFamide, and tachykinin-related peptide. Collectively, 80 distinct ixodoidean neuropeptides were characterized from the identified precursors. These results not only expand greatly the number of known/predicted ixodoidean neuropeptides, but also provide a strong foundation for future molecular and physiological investigations of peptidergic control in this important group of disease-transmitting arthropods. Topics: Amino Acid Sequence; Animals; Base Sequence; Databases, Genetic; Databases, Nucleic Acid; Expressed Sequence Tags; Gene Library; Insect Proteins; Molecular Sequence Data; Neuropeptides; Oligopeptides; Sequence Alignment; Ticks | 2008 |
The anterior stomach of larval mosquitoes (Aedes aegypti): effects of neuropeptides on transepithelial ion transport and muscular motility.
The present investigation studied the influence of a number of neuropeptides on semi-open preparations of the isolated and perfused anterior stomach of larval Aedes aegypti. Effects of peptides were observed on the lumen negative transepithelial voltage (Vte) that is present with serotonin in the bath; this voltage most likely reflects active HCO3- secretion involved in alkalization of the larval anterior stomach. The five different A. aegypti allatostatins (allatostatin A 1-5) all affected Vte in almost identical ways, causing a 10-15% reduction of the voltage at 10(-7) mol l(-1). A. aegypti neuropeptide F and proctolin reduced Vte at submicromolar concentrations. At 10(-6) mol l(-1), neuropeptide F reduced Vte by 30% and proctolin reduced Vte by 50%. In contrast, A. aegypti allatotropin, A. aegypti head peptides I and III and A. aegypti short neuropeptide F were without effect on Vte. During the investigation it was observed that the peristaltic contractions of the preparations caused a dynamic component of Vte. Peristaltic contractions and the correlated voltage fluctuations depended on the presence of serotonin. Peristaltic activity and Vte deflections were progressively inhibited by A. aegypti head peptides I and III by A. aegypti short neuropeptide F and by A. aegypti neuropeptide F when the peptide concentrations were increased from 10(-8) to 10(-6) mol l(-1). These observations show that physiological concentrations of some of the tested neuropeptides affect two processes that require coordination: ion transport and motility of the larval anterior stomach. Topics: Aedes; Amino Acid Sequence; Analysis of Variance; Animals; Biological Transport, Active; Electrophysiology; Epithelium; Gastric Mucosa; Insect Hormones; Ion Transport; Larva; Membrane Potentials; Molecular Sequence Data; Neuropeptides; Oligopeptides; Peristalsis; Serotonin; Stomach | 2004 |
Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin2 interactions.
Activation of G protein-coupled receptors (GPCR) leads to the recruitment of beta-arrestins. By tagging the beta-arrestin molecule with a green fluorescent protein, we can visualize the activation of GPCRs in living cells. We have used this approach to de-orphan and study 11 GPCRs for neuropeptide receptors in Drosophila melanogaster. Here we verify the identities of ligands for several recently de-orphaned receptors, including the receptors for the Drosophila neuropeptides proctolin (CG6986), neuropeptide F (CG1147), corazonin (CG10698), dFMRF-amide (CG2114), and allatostatin C (CG7285 and CG13702). We also de-orphan CG6515 and CG7887 by showing these two suspected tachykinin receptor family members respond specifically to a Drosophila tachykinin neuropeptide. Additionally, the translocation assay was used to de-orphan three Drosophila receptors. We show that CG14484, encoding a receptor related to vertebrate bombesin receptors, responds specifically to allatostatin B. Furthermore, the pair of paralogous receptors CG8985 and CG13803 responds specifically to the FMRF-amide-related peptide dromyosuppressin. To corroborate the findings on orphan receptors obtained by the translocation assay, we show that dromyosuppressin also stimulated GTPgammaS binding and inhibited cAMP by CG8985 and CG13803. Together these observations demonstrate the beta-arrestin-green fluorescent protein translocation assay is an important tool in the repertoire of strategies for ligand identification of novel G protein-coupled receptors. Topics: Animals; Arrestins; beta-Arrestins; Cell Line; Cloning, Molecular; Cyclic AMP; Dose-Response Relationship, Drug; Drosophila; Drosophila Proteins; FMRFamide; Green Fluorescent Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Insect Hormones; Insect Proteins; Ligands; Luminescent Proteins; Microscopy, Confocal; Neuropeptides; Oligopeptides; Peptides; Protein Transport; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Receptors, Peptide; Receptors, Tachykinin; Transfection | 2003 |