neuropeptide-f and crustacean-cardioactive-peptide

neuropeptide-f has been researched along with crustacean-cardioactive-peptide* in 5 studies

Other Studies

5 other study(ies) available for neuropeptide-f and crustacean-cardioactive-peptide

ArticleYear
CCAP regulates feeding behavior via the NPF pathway in
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 03-31, Volume: 117, Issue:13

    The intake of macronutrients is crucial for the fitness of any animal and is mainly regulated by peripheral signals to the brain. How the brain receives and translates these peripheral signals or how these interactions lead to changes in feeding behavior is not well-understood. We discovered that 2 crustacean cardioactive peptide (CCAP)-expressing neurons in

    Topics: Animals; Brain; Circadian Rhythm; Dopamine; Drosophila melanogaster; Drosophila Proteins; Feeding Behavior; Neurons; Neuropeptides; Signal Transduction; Starvation

2020
Prediction of Scylla olivacea (Crustacea; Brachyura) peptide hormones using publicly accessible transcriptome shotgun assembly (TSA) sequences.
    General and comparative endocrinology, 2016, 05-01, Volume: 230-231

    The aquaculture of crabs from the genus Scylla is of increasing economic importance for many Southeast Asian countries. Expansion of Scylla farming has led to increased efforts to understand the physiology and behavior of these crabs, and as such, there are growing molecular resources for them. Here, publicly accessible Scylla olivacea transcriptomic data were mined for putative peptide-encoding transcripts; the proteins deduced from the identified sequences were then used to predict the structures of mature peptide hormones. Forty-nine pre/preprohormone-encoding transcripts were identified, allowing for the prediction of 187 distinct mature peptides. The identified peptides included isoforms of adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon β, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31, eclosion hormone, FMRFamide-like peptide, HIGSLYRamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide and tachykinin-related peptide, all well-known neuropeptide families. Surprisingly, the tissue used to generate the transcriptome mined here is reported to be testis. Whether or not the testis samples had neural contamination is unknown. However, if the peptides are truly produced by this reproductive organ, it could have far reaching consequences for the study of crustacean endocrinology, particularly in the area of reproductive control. Regardless, this peptidome is the largest thus far predicted for any brachyuran (true crab) species, and will serve as a foundation for future studies of peptidergic control in members of the commercially important genus Scylla.

    Topics: Amino Acid Sequence; Animals; Arthropod Proteins; Brachyura; FMRFamide; Invertebrate Hormones; Male; Nerve Tissue Proteins; Neuropeptides; Peptide Hormones; Proteome; Testis; Transcriptome

2016
Brain-midgut cross-talk and autocrine metabolastat via the sNPF/CCAP negative feed-back loop in the American cockroach, Periplaneta americana.
    Cell and tissue research, 2015, Volume: 362, Issue:3

    Immunohistochemical reactivities against short neuropeptide F (sNPF-ir) and crustacean cardioactive peptide (CCAP-ir) were detected in both the brain-subesophageal ganglion (Br-SOG) and midgut epithelial cells of the male American cockroach, Periplaneta americana. Four weeks of starvation increased the number of sNPF-ir cells and decreased the CCAP-ir cells in the Br-SOG, whereas refeeding reversed these effects. The contents of sNPF in the Br-SOG, midgut and hemolymph titer decreased in response to an injection of CCAP into the hemocoel of normally fed male cockroaches, while CCAP titers/contents decreased in response to an injection of sNPF. The results of a double-labeling experiment demonstrated that sNPF-ir co-existed in CCAP-ir cells in the pars intercerebralis (PI), dorsolateral region of protocerebrum (DL), deutocerebrum (De) and SOG. sNPF-ir and CCAP-ir were also colocalized in the midgut. sNPF and CCAP are neuropeptides and midgut factors that interact with each other. Since the two peptides are known to be secreted by identical cells that affect each other, this constitutes autocrine negative feedback regulation for a quick response to food accessibility/inaccessibility. These peptides not only constitute the switch in the digestive mechanism but also couple digestive adaptation with behavior. A CCAP injection suppressed locomotor activity when cockroaches were starved, whereas sNPF activated it when they were fed.

    Topics: Animals; Autocrine Communication; Brain; Cockroaches; Digestive System; Enzyme-Linked Immunosorbent Assay; Esophagus; Feedback, Physiological; Feeding Behavior; Ganglia, Invertebrate; Male; Metabolome; Motor Activity; Neuropeptides; Starvation

2015
In silico cloning of genes encoding neuropeptides, neurohormones and their putative G-protein coupled receptors in a spider mite.
    Insect biochemistry and molecular biology, 2012, Volume: 42, Issue:4

    The genome of the spider mite was prospected for the presence of genes coding neuropeptides, neurohormones and their putative G-protein coupled receptors. Fifty one candidate genes were found to encode neuropeptides or neurohormones. These include all known insect neuropeptides and neurohormones, with the exception of sulfakinin, corazonin, neuroparsin and PTTH. True orthologs of adipokinetic hormone (AKH) were neither found, but there are three genes encoding peptides similar in structure to both AKH and the AKH-corazonin-related peptide. We were also unable to identify the precursors for pigment dispersing factor (PDF) or the recently discovered trissin. However, the spider mite probably does have such genes, as we found their putative receptors. A novel arthropod neuropeptide gene was identified that shows similarity to previously described molluscan neuropeptide genes and was called EFLamide. A total of 65 putative neuropeptide GPCR genes were also identified, of these 58 belong to the A-family and 7 to the B-family. Phylogenetic analysis showed that 50 of them are closely related to insect GPCRs, which allowed the identification of their putative ligand in 39 cases with varying degrees of certainty. Other spider mite GPCRs however have no identifiable orthologs in the genomes of the four holometabolous insect species best analyzed. Whereas some of the latter have orthologs in hemimetabolous insect species, crustaceans or ticks, for others such arthropod homologs are currently unknown.

    Topics: Amino Acid Sequence; Animals; Arthropod Proteins; Insect Hormones; Insulins; Invertebrate Hormones; Molecular Sequence Data; Nerve Tissue Proteins; Neuropeptides; Neurotransmitter Agents; Oligopeptides; Receptors, G-Protein-Coupled; Tetranychidae

2012
Identification of chelicerate neuropeptides using bioinformatics of publicly accessible expressed sequence tags.
    General and comparative endocrinology, 2011, Jan-01, Volume: 170, Issue:1

    While numerous investigations have focused on the identification of neuropeptides in arthropods, most have been conducted on members of the Hexapoda or Crustacea, and little is currently known about those in the Chelicerata. Here, publicly accessible expressed sequence tags (ESTs) were mined for putative chelicerate neuropeptide-encoding transcripts; the peptides encoded by the ESTs were deduced using on-line peptide prediction programs and homology to known isoforms. Fifty-eight ESTs representing eight peptide families/subfamilies were identified using this strategy. Of note was the prediction of the first authentic chelicerate C-type allatostatin, pQIRYHQCYFNPISCF, from the mite Tetranychus urticae, as well as the prediction a novel allatostatin CC peptide, GEGKMFWRCYFNAVSCF, from both the tick Amblyomma variegatum and the scorpion Mesobuthus gibbosus. Also identified from T. urticae were authentic crustacean cardioactive peptide (CCAP), several peptides belonging to the crustacean hyperglycemic hormone/ion transport peptide superfamily, members of the calcitonin-like diuretic hormone/diuretic hormone 31 family, and several FMRFamide-like peptides, specifically members of the neuropeptide F (NPF) and short neuropeptide F subfamilies. To the best of our knowledge the identifications of CCAP and NPF in T. urticae are the first for the Chelicerata. In addition, several novel orcokinins were identified from the scorpion Scorpiops jendeki and the spider Loxosceles laeta; in S. jendeki previously unknown isoforms of SIFamide, ESRNPPLNGSMFamide and ESKNPPLNGSMFamide, were also predicted. Taken collectively, the data presented in our study expand the catalog of known chelicerate neuropeptides and provide a foundation for future physiological studies of them in these animals.

    Topics: Animals; Arthropods; Computational Biology; Expressed Sequence Tags; Neuropeptides

2011