neurokinin-a and preproenkephalin

neurokinin-a has been researched along with preproenkephalin* in 2 studies

Other Studies

2 other study(ies) available for neurokinin-a and preproenkephalin

ArticleYear
Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-D-aspartate receptor mechanism.
    Brain research, 2002, Oct-11, Volume: 952, Issue:1

    Intrathecal (i.t.) administration of big dynorphin (1-10 fmol), a prodynorphin-derived peptide consisting of dynorphin A and dynorphin B, to mice produced a characteristic behavioral response, the biting and/or licking of the hindpaw and the tail along with slight hindlimb scratching directed toward the flank, which peaked at 5-15 min after an injection. Dynorphin A produced a similar response, though the doses required were higher (0.1-30 pmol) whereas dynorphin B was practically inactive even at 1000 pmol. The behavior induced by big dynorphin (3 fmol) was dose-dependently inhibited by intraperitoneal injection of morphine (0.125-2 mg/kg) and also dose-dependently, by i.t. co-administration of D(-)-2-amino-5-phosphonovaleric acid (D-APV) (1-4 nmol), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801 (0.25-4 nmol), an NMDA ion-channel blocker, and ifenprodil (2-8 pmol), an inhibitor of the NMDA receptor ion-channel complex interacting with the NR2B subunit and the polyamine recognition site. On the other hand, naloxone, an opioid receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA glutamate receptor antagonist, 7-chlorokynurenic acid, a competitive antagonist of the glycine recognition site on the NMDA receptor ion-channel complex, [D-Phe(7),D-His(9)]-substance P(6-11), a specific antagonist for substance P (NK1) receptors, and MEN-10376, a tachykinin NK2 receptor antagonist, had no effect. These results suggest that big dynorphin-induced nociceptive behavior is mediated through the activation of the NMDA receptor ion-channel complex by acting on the NR2B subunit and/or the polyamine recognition site but not on the glycine recognition site, and does not involve opioid, non-NMDA glutamate receptor mechanisms or tachykinin receptors in the mouse spinal cord.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Analgesics, Opioid; Animals; Behavior, Animal; Dizocilpine Maleate; Dynorphins; Endorphins; Enkephalins; Excitatory Amino Acid Antagonists; Injections, Spinal; Kynurenic Acid; Male; Mice; Morphine; Neurokinin A; Nociceptors; Peptide Fragments; Piperidines; Protein Precursors; Receptors, N-Methyl-D-Aspartate; Receptors, Tachykinin; Substance P

2002
The human neostriatum shows compartmentalization of neuropeptide gene expression in dorsal and ventral regions: an in situ hybridization histochemical analysis.
    Neuroscience, 1995, Volume: 64, Issue:3

    Expression of neuropeptide messenger RNAs in striatal neurons was studied in post mortem human brain tissue by the use of in situ hybridization histochemistry. Clusters of cells expressing high levels of prodynorphin messenger RNA, and less strikingly, preprotachykinin messenger RNA, were prominent in the caudate nucleus and were present but less pronounced in the putamen. Proenkephalin and prosomatostatin messenger RNA-containing cells were more homogeneously distributed throughout the striatum, though the latter were much sparser. The four neuropeptide messenger RNA patterns in the nucleus accumbens were rather homogeneous compared with the dorsal striatum. Of these, prodynorphin messenger RNA showed a higher level of expression per cell in the nucleus accumbens relative to the dorsal striatum. The relationship of neuropeptide-containing cell clusters to the striosomal organization was characterized by looking at the register of these markers with patterns of low acetylcholinesterase activity and dense mu opiate receptor binding. In the caudate and putamen, clusters of cells expressing high levels of dynorphin and preprotachykinin messenger RNAs were clearly in register with the striosomes. The accumbens was defined by high prodynorphin messenger RNA levels, both low and high levels of acetylcholinesterase staining, and very low to absent mu opiate receptor binding. The distribution of high-expressing prodynorphin messenger RNA-containing cells--to the patch compartment and throughout the entire ventral striatum/nucleus accumbens region--defines the limbic domain of the neostriatum and suggests particular relevance to human striatal organization and function, because the distribution of this opioid neuropeptide is considerably more compartmentalized in human than in non-human species.

    Topics: Acetylcholinesterase; Adolescent; Adult; Cocaine; Enkephalins; Female; Gene Expression Regulation; Humans; In Situ Hybridization; Male; Middle Aged; Neostriatum; Neurokinin A; Nucleus Accumbens; Protein Precursors; Receptors, Opioid, mu; RNA, Messenger; Somatostatin; Substance P; Tachykinins

1995