neurokinin-a and ifenprodil

neurokinin-a has been researched along with ifenprodil* in 2 studies

Other Studies

2 other study(ies) available for neurokinin-a and ifenprodil

ArticleYear
Intrathecally administered D-cycloserine produces nociceptive behavior through the activation of N-methyl-D-aspartate receptor ion-channel complex acting on the glycine recognition site.
    Journal of pharmacological sciences, 2007, Volume: 104, Issue:1

    Intrathecal (i.t.) administration of D-cycloserine (100 and 300 fmol), a partial agonist of the glycine recognition site on the N-methyl-D-aspartate (NMDA) receptor ion-channel complex, produced a behavioral response mainly consisting of biting and/or licking of the hindpaw and the tail along with slight hindlimb scratching directed toward the flank in mice, which peaked at 5 - 10 min and almost disappeared at 15 min after the injection. The behavior induced by D-cycloserine (300 fmol) was dose-dependently inhibited by an intraperitoneal injection of morphine (0.5-2 mg/kg), suggesting that the behavioral response is related to nociception. The nociceptive behavior was also dose-dependently inhibited by i.t. co-administration of 7-chlorokynurenic acid (0.25-4 nmol), a competitive antagonist of the glycine recognition site on the NMDA receptor ion-channel complex; D-(-)-2-amino-5-phosphonovaleric acid (62.5-500 pmol), a competitive NMDA receptor antagonist; MK-801 (62.5-500 pmol), an NMDA ion-channel blocker; ifenprodil (0.5-8 nmol); arcaine (31-125 pmol); and agmatine (0.1-10 pmol), all being antagonists of the polyamine recognition site on the NMDA receptor ion-channel complex. However, [D-Phe7,D-His9]-substance P(6-11), a specific antagonist for substance P (NK1) receptors, and MEN-10,376, a tachykinin NK2-receptor antagonist, had no effect on D-cycloserine-induced nociceptive behavior. These results in the mouse spinal cord suggest that D-cycloserine-induced nociceptive behavior is mediated through the activation of the NMDA receptor ion-channel complex by acting on the glycine recognition site and that it does not involve the tachykinin receptor mechanism.

    Topics: 2-Amino-5-phosphonovalerate; Agmatine; Animals; Cycloserine; Dizocilpine Maleate; Dose-Response Relationship, Drug; Injections, Spinal; Ion Channels; Kynurenic Acid; Mice; Morphine; Neurokinin A; Nociceptors; Pain; Peptide Fragments; Piperidines; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate; Receptors, Tachykinin; Substance P

2007
Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-D-aspartate receptor mechanism.
    Brain research, 2002, Oct-11, Volume: 952, Issue:1

    Intrathecal (i.t.) administration of big dynorphin (1-10 fmol), a prodynorphin-derived peptide consisting of dynorphin A and dynorphin B, to mice produced a characteristic behavioral response, the biting and/or licking of the hindpaw and the tail along with slight hindlimb scratching directed toward the flank, which peaked at 5-15 min after an injection. Dynorphin A produced a similar response, though the doses required were higher (0.1-30 pmol) whereas dynorphin B was practically inactive even at 1000 pmol. The behavior induced by big dynorphin (3 fmol) was dose-dependently inhibited by intraperitoneal injection of morphine (0.125-2 mg/kg) and also dose-dependently, by i.t. co-administration of D(-)-2-amino-5-phosphonovaleric acid (D-APV) (1-4 nmol), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801 (0.25-4 nmol), an NMDA ion-channel blocker, and ifenprodil (2-8 pmol), an inhibitor of the NMDA receptor ion-channel complex interacting with the NR2B subunit and the polyamine recognition site. On the other hand, naloxone, an opioid receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA glutamate receptor antagonist, 7-chlorokynurenic acid, a competitive antagonist of the glycine recognition site on the NMDA receptor ion-channel complex, [D-Phe(7),D-His(9)]-substance P(6-11), a specific antagonist for substance P (NK1) receptors, and MEN-10376, a tachykinin NK2 receptor antagonist, had no effect. These results suggest that big dynorphin-induced nociceptive behavior is mediated through the activation of the NMDA receptor ion-channel complex by acting on the NR2B subunit and/or the polyamine recognition site but not on the glycine recognition site, and does not involve opioid, non-NMDA glutamate receptor mechanisms or tachykinin receptors in the mouse spinal cord.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Analgesics, Opioid; Animals; Behavior, Animal; Dizocilpine Maleate; Dynorphins; Endorphins; Enkephalins; Excitatory Amino Acid Antagonists; Injections, Spinal; Kynurenic Acid; Male; Mice; Morphine; Neurokinin A; Nociceptors; Peptide Fragments; Piperidines; Protein Precursors; Receptors, N-Methyl-D-Aspartate; Receptors, Tachykinin; Substance P

2002