nephrin and sodium-bisulfide

nephrin has been researched along with sodium-bisulfide* in 2 studies

Other Studies

2 other study(ies) available for nephrin and sodium-bisulfide

ArticleYear
Effects of hydrogen sulfide on high glucose-induced glomerular podocyte injury in mice.
    International journal of clinical and experimental pathology, 2015, Volume: 8, Issue:6

    The aim of this study was to assess the effects of hydrogen sulfide on high glucose-induced mouse podocyte (MPC) injury and the underlying mechanisms. Mouse podocytes were randomly divided into 4 groups, including high glucose (HG), normal glucose (NG), normal glucose + DL-propargylglycine (PPG), and high glucose + NaHS (HG + NaHS) groups for treatment. Then, ZO-2, nephrin, β-catenin, and cystathionine γ-lyase (CSE) protein expression levels were determined by western blot. We found that high glucose significantly reduced nephrin, ZO-2, and CSE expression levels (P<0.05), and overtly elevated β-catenin amounts (P<0.05), in a time-dependent manner. Likewise, PPG at different concentrations in normal glucose resulted in significantly lower CSE, ZO-2, and nephrin levels (P<0.05), and increased β-catenin amounts (P<0.05). Interestingly, significantly increased ZO-2 and nephrin levels, and overtly reduced β-catenin amounts were observed in the HG + NaHS group compared with HG treated cells (P<0.01). Compared with NG treated cells, decreased ZO-2 and nephrin levels and higher β-catenin amounts were obtained in the HG + NaHS group. In conclusion,CSE downregulation contributes to hyperglycemia induced podocyte injury, which is alleviated by exogenous H2S possibly through ZO-2 upregulation and the subsequent suppression of Wnt/β-catenin pathway.

    Topics: Alkynes; beta Catenin; Cells, Cultured; Cystathionine gamma-Lyase; Cytoprotection; Glucose; Glycine; Hydrogen Sulfide; Membrane Proteins; Podocytes; Protective Agents; Sulfides; Time Factors; Wnt Signaling Pathway; Zonula Occludens-2 Protein

2015
Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure.
    American journal of physiology. Renal physiology, 2009, Volume: 297, Issue:2

    Elevated level of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), is associated with end-stage renal diseases. Hcy metabolizes in the body to produce hydrogen sulfide (H(2)S), and studies have demonstrated a protective role of H(2)S in end-stage organ failure. However, the role of H(2)S in HHcy-associated renal diseases is unclear. The present study was aimed to determine the role of H(2)S in HHcy-associated renal damage. Cystathionine-beta-synthase heterozygous (CBS+/-) and wild-type (WT, C57BL/6J) mice with two kidney (2-K) were used in this study and supplemented with or without NaHS (30 micromol/l, H(2)S donor) in the drinking water. To expedite the HHcy-associated glomerular damage, uninephrectomized (1-K) CBS(+/-) and 1-K WT mice were also used with or without NaHS supplementation. Plasma Hcy levels were elevated in CBS(+/-) 2-K and 1-K and WT 1-K mice along with increased proteinuria, whereas, plasma levels of H(2)S were attenuated in these groups compared with WT 2-K mice. Interestingly, H(2)S supplementation increased plasma H(2)S level and normalized the urinary protein secretion in the similar groups of animals as above. Increased activity of matrix metalloproteinase (MMP)-2 and -9 and apoptotic cells were observed in the renal cortical tissues of CBS(+/-) 2-K and 1-K and WT 1-K mice; however, H(2)S prevented apoptotic cell death and normalized increased MMP activities. Increased expression of desmin and downregulation of nephrin in the cortical tissue of CBS(+/-) 2-K and 1-K and WT 1-K mice were ameliorated with H(2)S supplementation. Additionally, in the kidney tissues of CBS(+/-) 2-K and 1-K and WT 1-K mice, increased superoxide (O(2)(*-)) production and reduced glutathione (GSH)-to-oxidized glutathione (GSSG) ratio were normalized with exogenous H(2)S supplementation. These results demonstrate that HHcy-associated renal damage is related to decreased endogenous H(2)S generation in the body. Additionally, here we demonstrate with evidence that H(2)S supplementation prevents HHcy-associated renal damage, in part, through its antioxidant properties.

    Topics: Animals; Antioxidants; Apoptosis; Cystathionine beta-Synthase; Desmin; Disease Models, Animal; Glutathione; Glutathione Disulfide; Homocysteine; Hydrogen Sulfide; Hyperhomocysteinemia; Kidney; Kidney Failure, Chronic; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Membrane Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Nephrectomy; Oxidative Stress; Proteinuria; Sulfides; Superoxides

2009