nephrin has been researched along with candesartan* in 5 studies
1 review(s) available for nephrin and candesartan
Article | Year |
---|---|
[Organ protection by angiotensin II receptor blockers].
Topics: Angiotensin II; Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Benzimidazoles; Biphenyl Compounds; Cognition Disorders; Heart Failure; Humans; Hypertension; Kidney Diseases; Losartan; Membrane Proteins; Mineralocorticoid Receptor Antagonists; Proteins; Proteinuria; Randomized Controlled Trials as Topic; Stroke; Tetrazoles | 2004 |
1 trial(s) available for nephrin and candesartan
Article | Year |
---|---|
Pharmacogenomics of hypertension: a genome‐wide, placebo‐controlled cross‐over study, using four classes of antihypertensive drugs.
Identification of genetic markers of antihypertensive drug responses could assist in individualization of hypertension treatment.. We conducted a genome-wide association study to identify gene loci influencing the responsiveness of 228 male patients to 4 classes of antihypertensive drugs. The Genetics of Drug Responsiveness in Essential Hypertension (GENRES) study is a double-blind, placebo-controlled cross-over study where each subject received amlodipine, bisoprolol,hydrochlorothiazide, and losartan, each as a monotherapy, in a randomized order. Replication analyses were performed in 4 studies with patients of European ancestry (PEAR Study, N=386; GERA I and II Studies, N=196 and N=198; SOPHIA Study, N=372). We identified 3 single-nucleotide polymorphisms within the ACY3 gene that showed associations with bisoprolol response reaching genome-wide significance (P<5x10(-8))however, this could not be replicated in the PEAR Study using atenolol. In addition, 39 single-nucleotide polymorphisms showed P values of 10(-5) to 10(-7). The 20 top-associated single-nucleotide polymorphisms were different for each antihypertensive drug. None of these top single-nucleotide polymorphisms co-localized with the panel of >40 genes identified in genome-wide association studies of hypertension. Replication analyses of GENRES results provided suggestive evidence for a missense variant (rs3814995) in the NPHS1 (nephrin) gene influencing losartan response, and for 2 variants influencing hydrochlorothiazide response, located within or close to the ALDH1A3 (rs3825926) and CLIC5 (rs321329) genes.. These data provide some evidence for a link between biology of the glomerular protein nephrin and antihypertensive action of angiotensin receptor antagonists and encourage additional studies on aldehyde dehydrogenase–mediated reactions in antihypertensive drug action. Topics: Adult; Aldehyde Oxidoreductases; Amlodipine; Antihypertensive Agents; Benzimidazoles; Biphenyl Compounds; Bisoprolol; Blood Pressure Monitoring, Ambulatory; Chloride Channels; Cross-Over Studies; Dose-Response Relationship, Drug; Double-Blind Method; Drug Administration Schedule; Essential Hypertension; Finland; Genome-Wide Association Study; Humans; Hydrochlorothiazide; Hypertension; Losartan; Male; Membrane Proteins; Meta-Analysis as Topic; Microfilament Proteins; Middle Aged; Mutation, Missense; Pharmacogenetics; Polymorphism, Single Nucleotide; Severity of Illness Index; Tetrazoles; Treatment Outcome | 2015 |
3 other study(ies) available for nephrin and candesartan
Article | Year |
---|---|
Candesartan Mediated Amelioration of Cisplatin-Induced Testicular Damage Is Associated with Alterations in Expression Patterns of Nephrin and Podocin.
Nephrin and podocin are known to be closely related to the pharmacological effects of angiotensin-II receptor blocker (ARB). The objectives of this study were to investigate the role of nephrin and podocin using cisplatin-induced testicular damage and to evaluate the effect of ARB. At first, we evaluated the effects of cisplatin either alone or in combination with ARB candesartan on changes in expression patterns of nephrin and podocin in the rat testes. We then conducted in vitro studies to investigate the effects of angiotensin using cultured Sertoli cells, line TM4. As a result, the expression of nephrin and podocin was shown to localize around the basal membrane of seminiferous tubules. Treatment with cisplatin resulted in a marked decrease in the expression of nephrin and podocin and induced a shift of both proteins from linear to granular expression patterns, accompanying the increased apoptotic index in the testes; these changes were partially restored by the additional administration of candesartan. In vitro studies with TM4 revealed the angiotensin-II mediated expression changes of nephrin and podocin. These findings suggest that candesartan can prevent cisplatin-induced testicular damage by regulating expression patterns of the nephrin-podocin complex in the testes. Topics: Animals; Benzimidazoles; Biphenyl Compounds; Cisplatin; Gene Expression Regulation; Humans; Intracellular Signaling Peptides and Proteins; Kidney Glomerulus; Male; Membrane Proteins; Rats; Testis; Tetrazoles | 2015 |
Female spontaneously hypertensive rats are more dependent on ANG (1-7) to mediate effects of low-dose AT1 receptor blockade than males.
ANG (1-7) contributes to the blood pressure (BP)-lowering effect of angiotensin receptor blockers (ARBs) in male experimental animals. Females have greater ANG (1-7) concentrations than males; however, the contribution of ANG (1-7) to ARB-mediated decreases in BP in females is unknown. The current study tested the hypothesis that female spontaneously hypertensive rats (SHR) have a larger ANG (1-7) contribution to the BP-lowering effects of the ARB candesartan than male SHR. Twelve-week-old male and female SHR were randomized to receive candesartan (0.5 mg·kg(-1)·day(-1); 7 days), candesartan plus ANG II (200 ng·kg(-1)·min(-1); 7 days), the ANG (1-7) antagonist A-779 (48 μg·kg(-1)·h(-1)) plus candesartan and ANG II. Candesartan decreased basal BP in males and females (baseline vs. candesartan: 142 ± 2 vs. 122 ± 3 and 129 ± 1 vs. 115 ± 1 mmHg, respectively; P < 0.05); however, the decrease was greater in males. ANG II increased BP in males in the presence of candesartan (149 ± 2 mmHg; P < 0.05); candesartan blocked ANG II-induced increases in BP in females (116 ± 1 mmHg). Pretreatment with A-779 abolished candesartan-mediated decreases in BP in females, but not males. A-779 also exacerbated ANG II-induced proteinuria (26 ± 6 vs. 77 ± 11 μg·kg(-1)·day(-1), respectively; P < 0.05) and nephrinuria (20 ± 5 vs. 202 ± 58 μg·kg(-1)·day(-1), respectively; P < 0.05) in candesartan-treated female SHR, with no effect in males. In conclusion, females are more sensitive to the BP-lowering effect of ARBs during ANG II infusion, whereas males are more sensitive under basal conditions. In addition, ANG (1-7) has a greater contribution to ARB-mediated decreases in BP, protein, and nephrin excretion in females relative to males. Topics: Angiotensin I; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Benzimidazoles; Biphenyl Compounds; Blood Pressure; Cell Adhesion Molecules; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Hypertension; Male; Membrane Proteins; Peptide Fragments; Rats; Rats, Inbred SHR; Receptor, Angiotensin, Type 1; Sex Factors; Tetrazoles | 2014 |
Transcriptional regulation of nephrin gene by peroxisome proliferator-activated receptor-gamma agonist: molecular mechanism of the antiproteinuric effect of pioglitazone.
The renoprotective potential of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist pioglitazone was explored in an immune model of progressive nephropathy, passive Heymann nephritis (PHN), compared with that of an angiotensin II receptor antagonist, taken as standard therapy for renoprotection. PHN rats received orally vehicle, pioglitazone (10 mg/kg twice daily), or candesartan (1 mg/kg twice daily) from months 2 to 8. Pioglitazone reduced proteinuria as effectively as candesartan and limited renal functional and structural changes. Kidneys from untreated PHN rats showed lower nephrin mRNA and protein than controls, both restored by pioglitazone. The effect was seen both early and late during the course of the disease. Whether the antiproteinuric effect of pioglitazone could be due to its effect on nephrin gene transcription also was investigated. HK-2 cells were transfected with plasmids that harbor the luciferase gene under portions (2-kb or 325-bp) of human nephrin gene promoter that contain putative peroxisome proliferator-responsive elements (PPRE) and incubated with pioglitazone (10 muM). Transcriptional activity of luciferase gene was highly increased by pioglitazone, with the strongest expression achieved with the 325-bp fragment. Increase in luciferase activity was prevented by bisphenol A diglycidyl ether, a PPAR-gamma synthetic antagonist. Electrophoretic mobility shift assay experiments showed a direct interaction of PPAR/retinoid X receptor heterodimers to PPRE present in the enhancer region of the nephrin promoter. In conclusion, pioglitazone exerts an antiproteinuric effect in immune-mediated glomerulonephritis as angiotensin II receptor antagonist does. Enhancement of nephrin gene transcription through specific PPRE in its promoter discloses a novel mechanism of renoprotection for PPAR-gamma agonists. Topics: Angiotensin Receptor Antagonists; Animals; Benzimidazoles; Biphenyl Compounds; Gene Expression Regulation; Humans; Hypoglycemic Agents; Kidney Diseases; Male; Membrane Proteins; Pioglitazone; PPAR gamma; Proteinuria; Rats; Rats, Sprague-Dawley; Tetrazoles; Thiazolidinediones; Transcription, Genetic | 2006 |