nephrin has been researched along with candesartan-cilexetil* in 2 studies
2 other study(ies) available for nephrin and candesartan-cilexetil
Article | Year |
---|---|
Renin-angiotensin blockade resets podocyte epigenome through Kruppel-like Factor 4 and attenuates proteinuria.
Proteinuria is a central component of chronic kidney disease and an independent risk factor for cardiovascular disease. Kidney podocytes have an essential role as a filtration barrier against proteinuria. Kruppel-like Factor 4 (KLF4) is expressed in podocytes and decreased in glomerular diseases leading to methylation of the nephrin promoter, decreased nephrin expression and proteinuria. Treatment with an angiotensin receptor blocker (ARB) reduced methylation of the nephrin promoter in murine glomeruli of an adriamycin nephropathy model with recovery of KLF4 expression and a decrease in albuminuria. In podocyte-specific KLF4 knockout mice, the effect of ARB on albuminuria and the nephrin promoter methylation was attenuated. In cultured human podocytes, angiotensin II reduced KLF4 expression and caused methylation of the nephrin promoter with decreased nephrin expression. In patients, nephrin promoter methylation was increased in proteinuric kidney diseases with decreased KLF4 and nephrin expression. KLF4 expression in ARB-treated patients was higher in patients with than without ARB treatment. Thus, angiotensin II can modulate epigenetic regulation in podocytes and ARB inhibits these actions in part via KLF4 in proteinuric kidney diseases. This study provides a new concept that renin-angiotensin system blockade can exert therapeutic effects through epigenetic modulation of the kidney gene expression. Topics: Albuminuria; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Benzimidazoles; Biphenyl Compounds; Cell Line; Disease Models, Animal; DNA Methylation; Dose-Response Relationship, Drug; Doxorubicin; Epigenesis, Genetic; Irbesartan; Kruppel-Like Factor 4; Kruppel-Like Transcription Factors; Male; Membrane Proteins; Mice, Inbred C57BL; Mice, Knockout; Podocytes; Promoter Regions, Genetic; Renal Insufficiency, Chronic; Renin-Angiotensin System; Signal Transduction; Tetrazoles; Time Factors; Transfection | 2015 |
Vaccination against the angiotensin type 1 receptor for the prevention of L-NAME-induced nephropathy.
Previous studies have shown that renin-angiotensin (Ang) system vaccines may be effective for the treatment of hypertension, but their efficacy for the prevention of renal disease is unclear. The aim of this study was to compare the effects of an Ang II type 1 (AT1) receptor vaccine with an Ang II receptor blocker (ARB) and a vasodilator on blood pressure (BP) and renal injury in the L-NAME nephropathy model. Male spontaneously hypertensive rats (SHRs) were divided into six groups and treated transiently with three injections of vehicle or AT1 receptor vaccine (0.1 mg) at age 4, 6 and 8 weeks, or continuously with candesartan cilexetil (0.1 mg kg(-1) per day) or hydralazine hydrochloride (5 mg kg(-1) per day), then administered NG-nitro-L-arginine methyl ester (L-NAME) from age 18 to 21 weeks to induce renal injury. Vaccination against the AT1 receptor caused a significant increase in AT1 receptor titers, and a sustained decrease in BP. L-NAME treatment resulted in a marked increase in proteinuria in the control groups, which was completely suppressed in the AT1 vaccine-treated group, and glomerular injury scores were also significantly decreased. Real-time RT-PCR and immunofluorescence studies revealed increased renin mRNA, and increased glomerular expression of nephrin. Comparable results were seen in rats treated continuously with the ARB candesartan, but not with hydralazine. These results suggest that transient AT1 vaccination is as effective as continuous treatment with ARB, not only for the attenuation of hypertension, but also for the prevention of L-NAME-induced nephropathy in SHR. Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Benzimidazoles; Biphenyl Compounds; Enzyme Inhibitors; Hydralazine; Kidney Diseases; Kidney Glomerulus; Male; Membrane Proteins; NG-Nitroarginine Methyl Ester; Proteinuria; Rats; Rats, Inbred SHR; Receptor, Angiotensin, Type 1; Tetrazoles; Vaccines | 2012 |