nephrin and 3-methyladenine

nephrin has been researched along with 3-methyladenine* in 2 studies

Other Studies

2 other study(ies) available for nephrin and 3-methyladenine

ArticleYear
The novel involvement of podocyte autophagic activity in the pathogenesis of lupus nephritis.
    Histology and histopathology, 2018, Volume: 33, Issue:8

    Lupus nephritis (LN) is one of the most common and severe complications in Systemic lupus erythematosus patients, and the mechanism underlining the pathogenesis of LN is still unknown. Autophagy plays vital roles in maintaining cell homeostasis and is involved in the pathogenesis of many diseases. In this study, we investigated the role of autophagy in the progression of LN.. Autophagic activities in podocytes of both LN patients (Class IV and V) and mice were evaluated. Podocytes were observed by electron microscopy, and autophagic activity was evaluated by immunofluorescence staining and western blot analysis. Apoptotic activity was evaluated by immunohistochemistry, TUNEL assays and flow cytometric analysis.. Significantly greater podocyte injury and discrepant autophagic levels were observed in LN patients. Differentiated mouse podocytes in the LN group showed reduced nephrin expression and increased apoptosis, as well as significantly higher levels of apoptosis-related proteins (cleaved caspase-3 and Bax). In the mice LN group, the increased number of autophagosomes was accompanied by increased LC3-II/LC3-I ratios and decreased p62, suggesting increased autophagic and apoptotic activity in podocytes. Blockade of autophagic activity by 3-MA or siRNA-mediated silencing of Atg5 resulted in decreases in LC3-II/LC3-I ratios, podocyte apoptosis and damage in the mice LN group. Futhermore, Rapamycin treatment increased LC3-II/LC3-I ratios, and enhanced LN-induced apoptosis in podocyte from modal animal.. This study demonstrates that autophagic activity of podocytes is a crucial factor in renal injury by directly affecting the function of podocyte; thus, inhibiting this activity during the early stages of LN is implicated as a potential therapeutic strategy for delaying the progression of LN. Also, clinical application in LN needs to consider patients' pathological type and drugs' comprehensive effectiveness.

    Topics: Adenine; Adolescent; Adult; Animals; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Autophagy-Related Proteins; Case-Control Studies; Cells, Cultured; Disease Models, Animal; Disease Progression; Female; Humans; Lupus Nephritis; Male; Membrane Proteins; Mice, Inbred C57BL; Mice, Inbred MRL lpr; Podocytes; Sirolimus; Young Adult

2018
Autophagy protects human podocytes from high glucose-induced injury by preventing insulin resistance.
    Metabolism: clinical and experimental, 2016, Volume: 65, Issue:9

    Insulin resistance is correlated with the progress of albuminuria in diabetic patients, and podocytes are crucial for maintaining the normal function of the glomerular filtration barrier. In the present study, we aimed to investigate the high glucose-induced insulin resistance and cell injury in human podocytes and the putative role of autophagy in this process.. Human podocytes were cultured in high glucose-supplemented medium and low glucose and high osmotic conditions were used for the controls. Autophagy in the podocytes was regulated using rapamycin or 3-methyladenine stimulation. Next, autophagy markers including LC3B, Beclin-1, and p62 were investigated using western blot and qPCR, and the insulin responsiveness was analyzed based on glucose uptake and by using the phosphorylation of the insulin receptor with Nephrin as a podocyte injury marker.. The basal autophagy level decreased under the high glucose conditions, which was accompanied by a decrease in the glucose uptake and phosphorylation of the insulin receptor in the human podocytes. More interestingly, the glucose uptake and the phosphorylation of the insulin receptor were decreased by 3-MA stimulation and increased by rapamycin, illustrating that the responsiveness of insulin was regulated by autophagy. The activation of autophagy by rapamycin also ameliorated cell injury in the human podocytes.. The presence or activation of autophagy was found to play a protective role in human podocytes against high glucose-induced insulin resistance and cell injury, which indicates a novel cellular mechanism and provides a potential therapeutic target for diabetic nephropathy (DN).

    Topics: Adenine; Autophagy; Cells, Cultured; Culture Media; Glucose; Humans; Insulin Resistance; Membrane Proteins; Osmolar Concentration; Phosphorylation; Podocytes; Receptor, Insulin; Sirolimus

2016