neoxanthin and fucoxanthin

neoxanthin has been researched along with fucoxanthin* in 5 studies

Other Studies

5 other study(ies) available for neoxanthin and fucoxanthin

ArticleYear
An algal enzyme required for biosynthesis of the most abundant marine carotenoids.
    Science advances, 2020, Volume: 6, Issue:10

    Fucoxanthin and its derivatives are the main light-harvesting pigments in the photosynthetic apparatus of many chromalveolate algae and represent the most abundant carotenoids in the world's oceans, thus being major facilitators of marine primary production. A central step in fucoxanthin biosynthesis that has been elusive so far is the conversion of violaxanthin to neoxanthin. Here, we show that in chromalveolates, this reaction is catalyzed by violaxanthin de-epoxidase-like (VDL) proteins and that VDL is also involved in the formation of other light-harvesting carotenoids such as peridinin or vaucheriaxanthin. VDL is closely related to the photoprotective enzyme violaxanthin de-epoxidase that operates in plants and most algae, revealing that in major phyla of marine algae, an ancient gene duplication triggered the evolution of carotenoid functions beyond photoprotection toward light harvesting.

    Topics: Algal Proteins; Aquatic Organisms; Carotenoids; Chlorophyll A; Gene Expression Regulation; Light-Harvesting Protein Complexes; Oxidoreductases; Phaeophyceae; Phylogeny; Xanthophylls

2020
Photo-excitation of carotenoids causes cytotoxicity via singlet oxygen production.
    Biochemical and biophysical research communications, 2012, Jan-06, Volume: 417, Issue:1

    Carotenoids, natural pigments widely distributed in algae and plants, have a conjugated double bond system. Their excitation energies are correlated with conjugation length. We hypothesized that carotenoids whose energy states are above the singlet excited state of oxygen (singlet oxygen) would possess photosensitizing properties. Here, we demonstrated that human skin melanoma (A375) cells are damaged through the photo-excitation of several carotenoids (neoxanthin, fucoxanthin and siphonaxanthin). In contrast, photo-excitation of carotenoids that possess energy states below that of singlet oxygen, such as β-carotene, lutein, loroxanthin and violaxanthin, did not enhance cell death. Production of reactive oxygen species (ROS) by photo-excited fucoxanthin or neoxanthin was confirmed using a reporter assay for ROS production with HeLa Hyper cells, which express a fluorescent indicator protein for intracellular ROS. Fucoxanthin and neoxanthin also showed high cellular penetration and retention. Electron spin resonance spectra using 2,2,6,6-tetramethil-4-piperidone as a singlet oxygen trapping agent demonstrated that singlet oxygen was produced via energy transfer from photo-excited fucoxanthin to oxygen molecules. These results suggest that carotenoids such as fucoxanthin, which are capable of singlet oxygen production through photo-excitation and show good penetration and retention in target cells, are useful as photosensitizers in photodynamic therapy for skin disease.

    Topics: Carotenoids; Cytotoxins; Dermatologic Agents; Electron Spin Resonance Spectroscopy; HeLa Cells; Humans; Light; Photochemotherapy; Photosensitizing Agents; Singlet Oxygen; Skin Diseases; Triacetoneamine-N-Oxyl; Xanthophylls

2012
Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum.
    Journal of experimental botany, 2012, Volume: 63, Issue:15

    The biosynthesis pathway to diadinoxanthin and fucoxanthin was elucidated in Phaeodactylum tricornutum by a combined approach involving metabolite analysis identification of gene function. For the initial steps leading to β-carotene, putative genes were selected from the genomic database and the function of several of them identified by genetic pathway complementation in Escherichia coli. They included genes encoding a phytoene synthase, a phytoene desaturase, a ζ-carotene desaturase, and a lycopene β-cyclase. Intermediates of the pathway beyond β-carotene, present in trace amounts, were separated by TLC and identified as violaxanthin and neoxanthin in the enriched fraction. Neoxanthin is a branching point for the synthesis of both diadinoxanthin and fucoxanthin and the mechanisms for their formation were proposed. A single isomerization of one of the allenic double bounds in neoxanthin yields diadinoxanhin. Two reactions, hydroxylation at C8 in combination with a keto-enol tautomerization and acetylation of the 3'-HO group results in the formation of fucoxanthin.

    Topics: beta Carotene; Biosynthetic Pathways; Carotenoids; Diatoms; Escherichia coli; Genetic Complementation Test; Geranylgeranyl-Diphosphate Geranylgeranyltransferase; Intramolecular Lyases; Oxidoreductases; Phylogeny; Xanthophylls; zeta Carotene

2012
Low bioavailability of dietary epoxyxanthophylls in humans.
    The British journal of nutrition, 2008, Volume: 100, Issue:2

    Epoxyxanthophylls (epoxide-containing xanthophylls), a group of carotenoids, are ubiquitously distributed in edible plants. Among them, neoxanthin in green leafy vegetables and fucoxanthin in brown algae have been reported to exhibit an antiproliferative effect on several human cancer cells in vitro. However, there is little information about the intestinal absorption and metabolic fate of dietary epoxyxanthophylls in humans. To estimate the intestinal absorption of neoxanthin and fucoxanthin in humans, we evaluated the plasma epoxyxanthophyll concentrations before and after 1-week dietary interventions with spinach (Spinacia oleracea) and wakame (Undaria pinnatifida). The epoxyxanthophylls and their metabolites in the plasma extracts were determined by HPLC after partial purification and concentration with solid-phase extraction cartridges. Even after 1 week of spinach intake (3.0 mg neoxanthin/d), the plasma concentrations of neoxanthin and its metabolites (neochrome stereoisomers) remained very low (about 1 nmol/l), whereas those of beta-carotene and lutein were markedly increased. Similarly, the plasma concentration of fucoxanthinol, a gastrointestinal metabolite of fucoxanthin, was < 1 nmol/l after 1 week of wakame intake (6.1 mg fucoxanthin/d). These results indicated that the plasma response to dietary epoxyxanthophylls was very low in humans even after 1-week intake of epoxyxanthophyll-rich diets.

    Topics: Adult; Biological Availability; Chromatography, High Pressure Liquid; Diet; Female; Humans; Intestinal Absorption; Male; Middle Aged; Spinacia oleracea; Undaria; Xanthophylls

2008
Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells.
    Cancer letters, 2005, Mar-18, Volume: 220, Issue:1

    Neoxanthin and fucoxanthin, which have the characteristic structure of 5,6-monoepoxide and an allenic bond, were previously found to reduce the viability of human prostate cancer cells most intensively among 15 dietary carotenoids tested. In the present study, the induction of apoptosis in PC-3 cells by these two carotenoids was characterized by morphological changes, DNA fragmentation, an increased percentage of hypodiploid cells, and cleavages of caspase-3 and PARP. The ratio of apoptotic cells reached more than 30% after treatment for 48 h with 20 microM carotenoids. They reduced the expression of Bax and Bcl-2 proteins, but not Bcl-X(L). Fucoxanthin accumulated in the cells at the same level as neoxanthin. Moreover, fucoxanthinol, a deacetylated product of fucoxanthin, formed in the cells treated with fucoxanthin and reached a level comparable to that of fucoxanthin after incubation for 24 h. Treatment by fucoxanthinol alone also induced apoptosis in PC-3 cells. Thus, neoxanthin and fucoxanthin treatments were found to induce apoptosis through caspase-3 activation in PC-3 human prostate cancer cells.

    Topics: Apoptosis; bcl-2-Associated X Protein; bcl-X Protein; Carotenoids; Humans; Male; Prostatic Neoplasms; Proto-Oncogene Proteins c-bcl-2; Reactive Oxygen Species; Tumor Cells, Cultured; Xanthophylls

2005