nemadipine-a has been researched along with 1-4-dihydropyridine* in 2 studies
2 other study(ies) available for nemadipine-a and 1-4-dihydropyridine
Article | Year |
---|---|
Ligand-based design, in silico ADME-Tox filtering, synthesis and biological evaluation to discover new soluble 1,4-DHP-based CFTR activators.
The altered gating of the mutant CFTR chloride channel cystic fibrosis (CF) may be corrected by small molecules called potentiators. We present a molecular scale simulation system for the discovery of ΔF508-CFTR soluble potentiators. Results report the design, ADME-Tox prediction, synthesis, solubility determination and in vitro biological evaluation of two 1,4-dihydropyridines (DHPs). Compound 1 shows a promising ADME-Tox profile and good potency. Topics: Absorption; Animals; Calcium Channel Blockers; Chemistry Techniques, Synthetic; Computational Biology; Cystic Fibrosis Transmembrane Conductance Regulator; Dihydropyridines; Drug Design; Humans; Ligands; Models, Molecular; Mutation; Protein Conformation; Quantitative Structure-Activity Relationship; Rats; Solubility | 2012 |
Differential sensitivities of CaV1.2 IIS5-S6 mutants to 1,4-dihydropyridine analogs.
1,4-Dihydropyridines (DHPs), L-type calcium channel (Ca(V)1) blockers, are known to interact with Ca(V)1.2 subunits through their binding site located at IIIS5-S6 and IVS6 regions. We recently identified two domain II residues (S666 and A752) critical for nifedipine blockade (Kwok et al., 2008). In this study, we examined the blockade effects of two DHP analogues, nemadipine and nicardipine, on wildtype, M1161A (in IIIS6), S666V (in IIS5) and A752T (in IIS6) mutants of the rat alpha(1C) subunit transiently expressed with beta(2a) and alpha(2)delta in cultured tsA201 cells. We found that the IC(50) ratio of the mutants to the wildtype channel was similar in S666V and M1161A mutants for both drugs, but in A752T it was lower for nemadipine than nicardipine (P<0.05). At saturating drug concentrations, not all the current was completely blocked in the mutants. The residual current recorded in 100 microM nemadipine was approximately 10% of the total current for the A752T channel, which was significantly higher than that in 100 microM nicardipine (approximately 2%). In wildtype, S666V and M1161A, there was no significant difference in residual current between nemadipine and nicardipine, although it was greater in S666V (approximately 15%) and M1161A approximately 30%) as compared to the wildtype channel (<5%). Taken together, our findings suggest that the domain II residues alter the DHP effect in a structure-specific manner and may be involved in a pathway downstream of DHP binding. Topics: Animals; Calcium Channel Blockers; Calcium Channels, L-Type; Cell Line; Dihydropyridines; Dose-Response Relationship, Drug; Inhibitory Concentration 50; Mutant Proteins; Nicardipine; Point Mutation; Protein Structure, Tertiary; Pyridines; Rats; Substrate Specificity | 2009 |