ncs-382 has been researched along with 4-hydroxy-2-butenoic-acid* in 3 studies
3 other study(ies) available for ncs-382 and 4-hydroxy-2-butenoic-acid
Article | Year |
---|---|
Improvement in γ-hydroxybutyrate-induced contextual fear memory deficit by systemic administration of NCS-382.
Low, nonsedative doses of γ-hydroxybutyric acid (GHB) produce short-term anterograde amnesia in humans and memory impairments in experimental animals. We have previously shown that acute systemic treatment of GHB in adolescent female rats impairs the acquisition, but not the expression, of contextual fear memory while sparing both the acquisition and the expression of auditory cued fear memory. In the brain, GHB binds to specific GHB-binding sites as well as to γ-aminobutyric acid type B (GABAB) receptors. Although many of the behavioral effects of GHB at high doses have been attributed to its effects on the GABAB receptor, it is unclear which receptor mediates its relatively low-dose memory-impairing effects. The present study examined the ability of the putative GHB receptor antagonist NCS-382 to block the disrupting effects of GHB on fear memory in adolescent rat. Groups of rats received either a single dose of NCS-382 (3-10 mg/kg, intraperitoneally) or vehicle, followed by an injection of either GHB (100 mg/kg, intraperitoneally) or saline. All rats were trained in the fear paradigm, and tested for contextual fear memory and auditory cued fear memory. NCS-382 dose-dependently reversed deficits in the acquisition of contextual fear memory induced by GHB in adolescent rats, with 5 mg/kg of NCS-382 maximally increasing freezing to the context compared with the group administered GHB alone. When animals were tested for cued fear memory, treatment groups did not differ in freezing responses to the tone. These results suggest that low-dose amnesic effects of GHB are mediated by GHB receptors. Topics: Animals; Anticonvulsants; Benzocycloheptenes; Conditioning, Classical; Disease Models, Animal; Dose-Response Relationship, Drug; Fear; Female; Freezing Reaction, Cataleptic; Hydroxybutyrates; Memory Disorders; Rats; Rats, Sprague-Dawley | 2016 |
Selective gamma-hydroxybutyric acid receptor ligands increase extracellular glutamate in the hippocampus, but fail to activate G protein and to produce the sedative/hypnotic effect of gamma-hydroxybutyric acid.
Two gamma-hydroxybutyric acid (GHB) analogues, trans-gamma-hydroxycrotonic acid (t-HCA) and gamma-(p-methoxybenzyl)-gamma-hydroxybutyric acid (NCS-435) displaced [3H]GHB from GHB receptors with the same affinity as GHB but, unlike GHB, failed to displace [3H]baclofen from GABAB receptors. The effect of the GHB analogues, GHB and baclofen, on G protein activity and hippocampal extracellular glutamate levels was compared. While GHB and baclofen stimulated 5'-O-(3-[35S]thiotriphospate) [35S]GTPgammaS binding both in cortex homogenate and cortical slices, t-HCA and NCS-435 were ineffective up to 1 mm concentration. GHB and baclofen effect was suppressed by the GABAB antagonist CGP 35348 but not by the GHB receptor antagonist NCS-382. Perfused into rat hippocampus, 500 nm and 1 mm GHB increased and decreased extracellular glutamate levels, respectively. GHB stimulation was suppressed by NCS-382, while GHB inhibition by CGP 35348. t-HCA and NCS-435 (0.1-1000 microm) locally perfused into hippocampus increased extracellular glutamate; this effect was inhibited by NCS-382 (10 microm) but not by CGP 35348 (500 microm). The results indicate that GHB-induced G protein activation and reduction of glutamate levels are GABAB-mediated effects, while the increase of glutamate levels is a GHB-mediated effect. Neither t-HCA nor NCS-435 reproduced GHB sedative/hypnotic effect in mice, confirming that this effect is GABAB-mediated. The GHB analogues constitute important tools for understanding the physiological role of endogenous GHB and its receptor. Topics: Animals; Autoradiography; Benzocycloheptenes; Binding, Competitive; Brain Chemistry; Extracellular Space; GABA Antagonists; Glutamic Acid; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Hippocampus; Hydroxybutyrates; Hypnotics and Sedatives; Ligands; Male; Mice; Mice, Inbred DBA; Microdialysis; Organophosphorus Compounds; Rats; Rats, Sprague-Dawley; Receptors, Cell Surface; Reflex | 2003 |
Pathway-specific action of gamma-hydroxybutyric acid in sensory thalamus and its relevance to absence seizures.
The systemic injection of gamma-hydroxybutyric acid (GHB) elicits spike and wave discharges (SWDs), the EEG hallmark of absence seizures, and represents a well established, widely used pharmacological model of this nonconvulsive epilepsy. Despite this experimental use of GHB, as well as its therapeutic use in narcolepsy and its increasing abuse, however, the precise cellular mechanisms underlying the different pharmacological actions of this drug are still unclear. Because sensory thalamic nuclei play a key role in the generation of SWDs and sleep rhythms, and because direct injection of GHB in the ventrobasal (VB) thalamus elicits SWDs, we investigated GHB effects on corticothalamic EPSCs and GABAergic IPSCs in VB thalamocortical (TC) neurons. GHB (250 microm-10 mm) reversibly decreased the amplitude of electrically evoked EPSCs and GABAA IPSCs via activation of GABAB receptors; however, approximately 60% of the IPSCs were insensitive to low (250 microm-1.0 mm) GHB concentrations. The putative GHB receptor antagonist NSC 382 applied alone had a number of unspecific effects, whereas it either had no action on, or further increased, the GHB-elicited effects on synaptic currents. Low GHB concentrations (250 microm) were also effective in increasing absence-like intrathalamic oscillations evoked by cortical afferent stimulation. These results indicate that low concentrations of GHB, similar to the brain concentrations that evoke SWDs in vivo, differentially affect excitatory and inhibitory synaptic currents in TC neurons and promote absence-like intrathalamic oscillations. Furthermore, the present data strengthen previous suggestions on the GHB mechanism of sleep promotion and will help focus future studies on the cellular mechanisms underlying its abuse. Topics: Afferent Pathways; Animals; Benzocycloheptenes; Cells, Cultured; Electric Conductivity; Epilepsy, Absence; Evoked Potentials; Excitatory Postsynaptic Potentials; GABA-B Receptor Agonists; Hydroxybutyrates; Neural Inhibition; Neurons, Afferent; Patch-Clamp Techniques; Rats; Rats, Wistar; Receptors, Cell Surface; Receptors, GABA-B; Synaptic Transmission; Thalamus | 2003 |