naringenin and oleanolic acid

naringenin has been researched along with oleanolic acid in 10 studies

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (10.00)18.2507
2000's2 (20.00)29.6817
2010's7 (70.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bohlin, L; Huss, U; Perera, P; Ringbom, T; Vasänge, M1
Backlund, A; Bohlin, L; Gottfries, J; Larsson, J1
Chin, YW; Jee, JG; Jeong, YJ; Keum, YS; Kim, Y; Lee, J; Lee, JM; Yu, MS1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Ahn, HC; Cho, SC; Choi, BY; Fei, X; Keum, YS; Kim, HJ; Lee, K; Seo, SY1
Akram, M; Atanasov, AG; Ateba, SB; Bachmann, F; Davis, RA; Engeli, RT; Krenn, L; Leugger, S; Njamen, D; Odermatt, A; Schuster, D; Stuppner, H; Temml, V; Vuorinen, A; Waltenberger, B1
Wang, MS; Zhang, YD1
Arai, T; Hamashima, Y; Hasegawa, J; Kajimoto, T; Node, M; Suzuki, N; Tanaka, R; Tokuda, H; Tsujii, H; Yamada, T1
Cárdenas, J; Escárcega-Bobadilla, MV; Estrada-Reyes, R; Frontana-Uribe, BA; Morales-Serna, JA; Salmón, M1
Ango, PY; Demirtas, I; Fotso, GW; Fozing, CD; Kapche, DW; Mapitse, R; Ngadjui, BT; Yeboah, EM; Yeboah, SO1

Other Studies

10 other study(ies) available for naringenin and oleanolic acid

ArticleYear
Screening of ubiquitous plant constituents for COX-2 inhibition with a scintillation proximity based assay.
    Journal of natural products, 2002, Volume: 65, Issue:11

    Topics: Acrolein; Alkaloids; Animals; Anthraquinones; Aspirin; Biological Assay; Catalysis; Cinnamomum zeylanicum; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Dinoprostone; Dose-Response Relationship, Drug; Eugenol; Flavonoids; Indomethacin; Inhibitory Concentration 50; Isoenzymes; Kinetics; Lactones; Models, Molecular; Nitrobenzenes; Oleanolic Acid; Plants, Medicinal; Prostaglandin-Endoperoxide Synthases; Pyrogallol; Steroids; Sulfonamides; Sulfones; Syzygium; Terpenes; Triterpenes; Ursolic Acid

2002
Expanding the ChemGPS chemical space with natural products.
    Journal of natural products, 2005, Volume: 68, Issue:7

    Topics: Biological Products; Combinatorial Chemistry Techniques; Computer Graphics; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Drug Evaluation, Preclinical; Molecular Structure; Prostaglandin-Endoperoxide Synthases; Structure-Activity Relationship

2005
Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13.
    Bioorganic & medicinal chemistry letters, 2012, Jun-15, Volume: 22, Issue:12

    Topics: Adenosine Triphosphate; Antiviral Agents; Apigenin; Breast; Cell Line; Cell Proliferation; Colorimetry; DNA; DNA Helicases; Epithelial Cells; Female; Flavonoids; Fluorescence Resonance Energy Transfer; Hepacivirus; Humans; Hydrolysis; Inhibitory Concentration 50; Kinetics; Methyltransferases; RNA Helicases; Severe acute respiratory syndrome-related coronavirus; Species Specificity; Viral Nonstructural Proteins; Viral Proteins

2012
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
Discovery of α-mangostin as a novel competitive inhibitor against mutant isocitrate dehydrogenase-1.
    Bioorganic & medicinal chemistry letters, 2015, Dec-01, Volume: 25, Issue:23

    Topics: Binding, Competitive; Drug Discovery; Humans; Isocitrate Dehydrogenase; MCF-7 Cells; Molecular Structure; Mutation; Recombinant Proteins; Structure-Activity Relationship; Xanthones

2015
Potential Antiosteoporotic Natural Product Lead Compounds That Inhibit 17β-Hydroxysteroid Dehydrogenase Type 2.
    Journal of natural products, 2017, 04-28, Volume: 80, Issue:4

    Topics: 17-Hydroxysteroid Dehydrogenases; Biological Products; Enzyme Inhibitors; Etiocholanolone; Humans; Models, Molecular; Molecular Structure; Structure-Activity Relationship; Testosterone

2017
Inhibition of 11 beta-hydroxysteroid dehydrogenase obtained from guinea pig kidney by some bioflavonoids and triterpenoids.
    Zhongguo yao li xue bao = Acta pharmacologica Sinica, 1997, Volume: 18, Issue:3

    Topics: 11-beta-Hydroxysteroid Dehydrogenases; Animals; Emodin; Enzyme Inhibitors; Flavanones; Flavonoids; Flavonols; Guinea Pigs; Hydroxysteroid Dehydrogenases; Kidney; Male; Microsomes; Oleanolic Acid

1997
Conjugates of 3α-methoxyserrat-14-en-21β-ol (PJ-1) and 3β-methoxyserrat-14-en-21β-ol (PJ-2) as cancer chemopreventive agents.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:8

    Topics: 9,10-Dimethyl-1,2-benzanthracene; Animals; Anticarcinogenic Agents; Antigens, Viral; Carcinogenicity Tests; Cell Transformation, Neoplastic; Epstein-Barr Virus Infections; Flavanones; Genistein; Herpesvirus 4, Human; Hesperidin; Isoflavones; Mice; Oleanolic Acid; Skin Neoplasms; Tetradecanoylphorbol Acetate; Triterpenes

2011
A new languidulane diterpenoid from Salvia mexicana var. mexicana.
    Molecules (Basel, Switzerland), 2011, Oct-21, Volume: 16, Issue:10

    Topics: Arbutin; Diterpenes; Flavanones; Lamiaceae; Magnetic Resonance Spectroscopy; Oleanolic Acid; Plant Components, Aerial; Plant Extracts; Salvia; Triterpenes; Ursolic Acid

2011
Thonningiiflavanonol A and thonningiiflavanonol B, two novel flavonoids, and other constituents of Ficus thonningii Blume (Moraceae).
    Zeitschrift fur Naturforschung. C, Journal of biosciences, 2016, Volume: 71, Issue:3-4

    Topics: Antioxidants; Ficus; Flavanones; Flavonoids; Gallic Acid; Genistein; Luteolin; Magnetic Resonance Spectroscopy; Molecular Structure; Oleanolic Acid; Parabens; Plant Bark; Plant Extracts; Plant Roots; Plant Stems; Quercetin; Sitosterols

2016