naringenin and luteolin-7-glucoside

naringenin has been researched along with luteolin-7-glucoside in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (12.50)18.2507
2000's2 (25.00)29.6817
2010's5 (62.50)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Chen, K; Cheng, YC; Hu, CQ; Kilkuskie, RE; Lee, KH; Shi, Q1
Du, GH; Lee, SM; Liu, AL; Wang, HD; Wang, YT1
Amić, D; Lucić, B1
Ataide Martins, JP; Borges de Melo, E; Castro Ferreira, MM; Friozi, MC; Marinho Jorge, TC1
Han, XZ; Li, X; Lou, HX; Ren, DM; Wang, SQ; Wang, XN1
Al-Asri, J; Fazekas, E; Görick, C; Gyémánt, G; Lehoczki, G; Melzig, MF; Mortier, J; Perdih, A; Wolber, G1
Bhutani, KK; Garg, D; Kadam, RU; Paul, AT; Roy, N1
Andrade, RB; Bougie, D; Boxer, MB; Brimacombe, KR; Brown, LE; Brown, MK; Burns, NZ; Cha, JK; Cheff, DM; Cheng, K; Clardy, J; Clement, JA; Coussens, NP; Crooks, PA; Cuny, GD; Dillon, C; Dorjsuren, D; Eastman, RT; Ganor, J; Garg, NK; Goess, BC; Grossman, RB; Guha, R; Hall, MD; Henderson, MJ; Huang, R; Hughes, CC; Iannotti, MJ; Inglese, J; Itkin, Z; Jadhav, A; Johnston, JN; Joullie, MM; Karavadhi, S; Kearney, SE; Kinghorn, AD; Kingston, DGI; Klumpp-Thomas, C; Krische, MJ; Kwon, O; Lee, TD; Lynch, C; Maimone, TJ; Majumdar, S; Maloney, KN; Mevers, EE; Michael, S; Mohamed, E; Moreno, J; Morrill, LA; Murphy, BT; Nagorny, P; Olson, DE; Overman, LE; Picazo, E; Porco, JA; Ren, T; Rivas, F; Rohde, JM; Ross, SA; Roth, JS; Sakamuru, S; Sarpong, R; Sharma, I; Shaw, JT; Shen, B; Shen, M; Shi, W; Shinn, P; Simeonov, A; Snyder, JK; Stephenson, CRJ; Sun, W; Susick, RB; Tan, DS; Tang, Y; Taylor, RE; Thomson, RJ; Titus, SA; Verano, AL; Vosburg, DA; Wan, KK; Wu, J; Wuest, WM; Xia, M; Xu, Z; Yasgar, A; Zahoránszky-Kőhalmi, G; Zakarian, A; Zhang, Y; Zhang, YQ; Zhao, J; Zhao, T; Zheng, W; Zuo, Z1

Other Studies

8 other study(ies) available for naringenin and luteolin-7-glucoside

ArticleYear
Anti-AIDS agents, 10. Acacetin-7-O-beta-D-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids.
    Journal of natural products, 1994, Volume: 57, Issue:1

    Topics: Antiviral Agents; Cells, Cultured; Flavonoids; Galactosides; HIV-1; Humans; Mass Spectrometry; Medicine, Chinese Traditional; Plants, Medicinal; Spectrophotometry, Infrared; Spectrophotometry, Ultraviolet; Structure-Activity Relationship; Virus Replication; Zidovudine

1994
Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities.
    Bioorganic & medicinal chemistry, 2008, Aug-01, Volume: 16, Issue:15

    Topics: Animals; Antiviral Agents; Cell Line; Cytopathogenic Effect, Viral; Dogs; Flavonoids; Influenza A Virus, H1N1 Subtype; Influenza A Virus, H3N2 Subtype; Influenza B virus; Molecular Structure; Neuraminidase; Orthomyxoviridae; Structure-Activity Relationship

2008
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics

2010
Multivariate QSAR study on the antimutagenic activity of flavonoids against 3-NFA on Salmonella typhimurium TA98.
    European journal of medicinal chemistry, 2010, Volume: 45, Issue:10

    Topics: Algorithms; Antimutagenic Agents; Flavonoids; Fluorenes; Least-Squares Analysis; Models, Biological; Models, Molecular; Mutagens; Quantitative Structure-Activity Relationship; Salmonella typhimurium

2010
Flavonoids from Dracocephalum tanguticum and their cardioprotective effects against doxorubicin-induced toxicity in H9c2 cells.
    Bioorganic & medicinal chemistry letters, 2010, Nov-15, Volume: 20, Issue:22

    Topics: Antineoplastic Agents; Cardiotonic Agents; Cell Line; Cell Line, Tumor; Chromatography, High Pressure Liquid; Doxorubicin; Drug Screening Assays, Antitumor; Flavonoids; Humans; Magnetic Resonance Spectroscopy; Structure-Activity Relationship

2010
From carbohydrates to drug-like fragments: Rational development of novel α-amylase inhibitors.
    Bioorganic & medicinal chemistry, 2015, Oct-15, Volume: 23, Issue:20

    Topics: alpha-Amylases; Carbohydrates; Dose-Response Relationship, Drug; Drug Discovery; Enzyme Inhibitors; High-Throughput Screening Assays; Humans; Models, Molecular; Molecular Structure; Structure-Activity Relationship

2015
Evaluation of proinflammatory cytokine pathway inhibitors for p38 MAPK inhibitory potential.
    Journal of medicinal chemistry, 2007, Dec-13, Volume: 50, Issue:25

    Topics: Anti-Inflammatory Agents; Biflavonoids; Cytokines; Flavanones; Flavones; Flavonoids; Glucosides; Hydrogen Bonding; Imidazoles; Luteolin; Models, Molecular; p38 Mitogen-Activated Protein Kinases; Pyridines; Structure-Activity Relationship

2007
Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space.
    ACS central science, 2018, Dec-26, Volume: 4, Issue:12

    Topics:

2018