naringenin has been researched along with acarbose in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (25.00) | 29.6817 |
2010's | 3 (75.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Chou, CJ; Frei, N; Grigorov, M; Lo Piparo, E; Scheib, H; Williamson, G | 1 |
Choi, JS; Jung, HA; Min, BS; Paudel, P; Seong, SH | 1 |
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR | 1 |
Al-Asri, J; Fazekas, E; Görick, C; Gyémánt, G; Lehoczki, G; Melzig, MF; Mortier, J; Perdih, A; Wolber, G | 1 |
4 other study(ies) available for naringenin and acarbose
Article | Year |
---|---|
Flavonoids for controlling starch digestion: structural requirements for inhibiting human alpha-amylase.
Topics: alpha-Amylases; Catalytic Domain; Digestion; Flavones; Flavonols; Humans; Hydrogen Bonding; Ligands; Models, Molecular; Protein Conformation; Saliva; Starch; Structure-Activity Relationship | 2008 |
Structure-related protein tyrosine phosphatase 1B inhibition by naringenin derivatives.
Topics: Dose-Response Relationship, Drug; Enzyme Inhibitors; Flavanones; Hep G2 Cells; Humans; Inhibitory Concentration 50; Models, Molecular; Protein Conformation; Protein Tyrosine Phosphatase, Non-Receptor Type 1 | 2017 |
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection | 2012 |
From carbohydrates to drug-like fragments: Rational development of novel α-amylase inhibitors.
Topics: alpha-Amylases; Carbohydrates; Dose-Response Relationship, Drug; Drug Discovery; Enzyme Inhibitors; High-Throughput Screening Assays; Humans; Models, Molecular; Molecular Structure; Structure-Activity Relationship | 2015 |