Page last updated: 2024-09-04

naproxen and aztreonam

naproxen has been researched along with aztreonam in 10 studies

Compound Research Comparison

Studies
(naproxen)
Trials
(naproxen)
Recent Studies (post-2010)
(naproxen)
Studies
(aztreonam)
Trials
(aztreonam)
Recent Studies (post-2010) (aztreonam)
4,5511,0571,429213032

Protein Interaction Comparison

ProteinTaxonomynaproxen (IC50)aztreonam (IC50)
Beta-lactamase Escherichia coli0.032
Penicillin-binding protein 1APseudomonas aeruginosa PAO13.34
Efflux transporter Salmonella enterica subsp. enterica serovar Newport0.006
Beta-lactamase Klebsiella pneumoniae0.006
AmpC Escherichia coli0.06

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (30.00)29.6817
2010's7 (70.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Jolivette, LJ; Ward, KW1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Chen, L; He, Z; Li, H; Liu, J; Liu, X; Sui, X; Sun, J; Wang, Y; Zhang, W1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Campillo, NE; Guerra, A; Páez, JA1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Bellera, CL; Bruno-Blanch, LE; Castro, EA; Duchowicz, PR; Goodarzi, M; Ortiz, EV; Pesce, G; Talevi, A1
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1

Reviews

1 review(s) available for naproxen and aztreonam

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

9 other study(ies) available for naproxen and aztreonam

ArticleYear
Extrapolation of human pharmacokinetic parameters from rat, dog, and monkey data: Molecular properties associated with extrapolative success or failure.
    Journal of pharmaceutical sciences, 2005, Volume: 94, Issue:7

    Topics: Algorithms; Animals; Dogs; Haplorhini; Humans; Pharmaceutical Preparations; Pharmacokinetics; Rats; Species Specificity; Tissue Distribution

2005
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Prediction of volume of distribution values in human using immobilized artificial membrane partitioning coefficients, the fraction of compound ionized and plasma protein binding data.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:11

    Topics: Blood Proteins; Chemistry, Physical; Computer Simulation; Humans; Membranes, Artificial; Models, Biological; Pharmaceutical Preparations; Protein Binding; Tissue Distribution

2009
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Neural computational prediction of oral drug absorption based on CODES 2D descriptors.
    European journal of medicinal chemistry, 2010, Volume: 45, Issue:3

    Topics: Administration, Oral; Humans; Models, Chemical; Neural Networks, Computer; Permeability; Quantitative Structure-Activity Relationship; Technology, Pharmaceutical

2010
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
Prediction of drug intestinal absorption by new linear and non-linear QSPR.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:1

    Topics: Humans; Intestinal Absorption; Linear Models; Molecular Conformation; Nonlinear Dynamics; Permeability; Pharmaceutical Preparations; Probability; Quantitative Structure-Activity Relationship; Thermodynamics

2011
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
    Chemical research in toxicology, 2012, Oct-15, Volume: 25, Issue:10

    Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding

2012