naphthoquinones and tricyclazole

naphthoquinones has been researched along with tricyclazole* in 3 studies

Other Studies

3 other study(ies) available for naphthoquinones and tricyclazole

ArticleYear
1,8-Dihydroxynaphthalene monoglucoside, a new metabolite of Sclerotinia sclerotiorum, and the effect of tricyclazole on its production.
    Canadian journal of microbiology, 2002, Volume: 48, Issue:4

    Isolate SS7 of Sclerotinia sclerotiorum was previously shown to produce and excrete into agar medium copious amounts of the melanin precursor 1,8-dihydroxynaphthalene. Much reduced quantities of this product were produced in the presence of tricyclazole, an inhibitor of pentaketide melanin biosynthesis. In this study, we demonstrate that young cultures of isolate SS7 produce 1,8-dihydroxynaphthalene monoglucoside, a new natural product not previously reported from fungi. When cultured in the presence of tricyclazole, such young cultures also accumulated two new monoglucosides of 1,3,8-trihydroxynaphthalene, which, as well as 1,8-dihydroxynaphthalene monoglucoside, were also obtained from cultures of two other isolates of S. sclerotiorum. It is proposed that rapid glucosylation of 1,3,8-trihydroxynaphthalene in young tricyclazole-inhibited S. sclerotiorum cultures accounts for the failure to observe 2-hydroxyjuglone or other metabolites usually associated with blockage of the pentaketide pathway to melanin in fungi.

    Topics: Ascomycota; Chromatography, Thin Layer; Glucosides; Melanins; Naphthols; Naphthoquinones; Thiazoles

2002
Biosynthesis and functions of melanin in Sporothrix schenckii.
    Infection and immunity, 2000, Volume: 68, Issue:6

    Sporothrix schenckii is a human pathogen that causes sporotrichosis, an important cutaneous mycosis with a worldwide distribution. It produces dark-brown conidia, which infect the host. We found that S. schenckii synthesizes melanin via the 1,8-dihydroxynaphthalene pentaketide pathway. Melanin biosynthesis in the wild type was inhibited by tricyclazole, and colonies of the fungus were reddish brown instead of black on tricyclazole-amended medium. Two melanin-deficient mutant strains were analyzed in this study: an albino that produced normal-appearing melanin on scytalone-amended medium and a reddish brown mutant that accumulated and extruded melanin metabolites into its medium. Scytalone and flaviolin obtained from cultures of the reddish brown mutant were identified by thin-layer chromatography, high-performance liquid chromatography, and UV spectra. Transmission electron microscopy showed an electron-dense granular material believed to be melanin in wild-type conidial cell walls, and this was absent in conidial walls of the albino mutant unless the albino was grown on a scytalone-amended medium. Melanized cells of wild-type S. schenckii and the albino grown on scytalone-amended medium were less susceptible to killing by chemically generated oxygen- and nitrogen-derived radicals and by UV light than were conidia of the mutant strains. Melanized conidia of the wild type and the scytalone-treated albino were also more resistant to phagocytosis and killing by human monocytes and murine macrophages than were unmelanized conidia of the two mutants. These results demonstrate that melanin protects S. schenckii against certain oxidative antimicrobial compounds and against attack by macrophages.

    Topics: Adult; Animals; Free Radicals; Humans; Macrophages, Peritoneal; Male; Melanins; Mice; Mice, Inbred BALB C; Monocytes; Mutation; Naphthols; Naphthoquinones; Respiratory Burst; Spores, Fungal; Sporothrix; Thiazoles; Ultraviolet Rays

2000
Melanin biosynthesis and the metabolism of flaviolin and 2-hydroxyjuglone in Wangiella dermatitidis.
    Archives of microbiology, 1985, Volume: 142, Issue:3

    Melanin biosynthesis in the human pathogen Wangiella dermatitidis was inhibited by tricyclazole, causing pentaketide melanin metabolites to accumulate in the cultures. One of these metabolites, scytalone, was racemic and thus different than the (+)-enantiomer from Verticillium dahliae. An albino mutant of W. dermatitidis metabolized scytalone to a pigment ultrastructurally identical to wild-type melanin. Cell-free homogenates of the wild type carried out typical reductive and dehydrative reactions with known melanin intermediates and the reductive reactions were inhibited by tricyclazole. Other reductive and dehydrative reactions that utilize flaviolin and 2-hydroxyjuglone were studied anaerobically with homogenates from both the wild type and the albino mutant. The homogenates converted flaviolin to 5-hydroxyscytalone and products identical to those obtained from 2-hydroxyjuglone. The albino, in culture, carried out the same reactions with 2-hydroxyjuglone but metabolized flaviolin to a number of unknown colored products apparently through oxidative reactions. Similarities between the melanin pathway and the flaviolin and 2-hydroxyjuglone branch pathways are discussed and tricyclazole is shown to inhibit reductive reactions with naphthols in the three pathways.

    Topics: Melanins; Mitosporic Fungi; Naphthols; Naphthoquinones; Optical Rotation; Thiazoles

1985