naphthoquinones and mangostin

naphthoquinones has been researched along with mangostin* in 2 studies

Other Studies

2 other study(ies) available for naphthoquinones and mangostin

ArticleYear
Synergistic effect on anti-methicillin-resistant Staphylococcus aureus among combinations of α-mangostin-rich extract, lawsone methyl ether and ampicillin.
    Letters in applied microbiology, 2020, Volume: 71, Issue:5

    α-Mangostin-rich extract (AME) exhibited satisfactory inhibitory activities against all tested MRSA strains, with minimum inhibitory concentrations (MICs) of 7·8-31·25 µg ml

    Topics: Ampicillin; Anti-Bacterial Agents; Drug Synergism; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Naphthoquinones; Plant Extracts; Staphylococcal Infections; Xanthones

2020
Oral spray containing plant-derived compounds is effective against common oral pathogens.
    Archives of oral biology, 2018, Volume: 90

    Plant-derived compounds are a good source of therapeutic agents and inhibitors of inflammatory process. Dental caries, periodontal diseases and candidiasis are common oral infections caused by virulent biofilms. The objectives of this study were to develop oral spray containing plant-derived compounds; α-mangostin (α-MG) and/or lawsone methyl ether (2-methoxy-1,4-naphthoquinone) (LME) and determine its antimicrobial, anti-biofilm, and anti-inflammatory activities.. Oral spray formulations were prepared containing α-MG (5 mg/ml) and/or LME (250 μg/ml). Antimicrobial activity against Candida albicans, Streptococcus mutans, and Porphyromonas gingivalis and anti-biofilm formation activities were determined as well as cytotoxicity and anti-inflammatory effects.. The oral spray demonstrated antimicrobial activity against all three of the oral pathogens tested with stronger effects on C. albicans and S. mutans than P. gingivalis. The formulation containing α-MG (2.5 mg/ml) and LME (125 ug/ml) reduced growth of the microorganisms about 1-2 Log CFU/ml at 1-3 h and the killing effects were complete at 24 h. Based on biofilm assay, the oral spray containing both α-MG and LME showed greater inhibitory effects than those with α-MG or LME. In addition, the oral spray containing both α-MG and LME demonstrated more inhibition of nitric oxide production than α-MG alone. All the formulations were safe and demonstrated greater anti-inflammatory activity at lower concentration (<6.25 μg/ml) than at a higher concentration.. Oral spray containing α-MG and/or LME is effective against common oral pathogens without significant cytotoxicity. Thus, it has the potential to prevent the infections and may serve as adjunctive treatment to conventional therapy.

    Topics: Animals; Anti-Infective Agents; Anti-Inflammatory Agents; Biofilms; Candida albicans; Candidiasis; Cell Survival; Colony Count, Microbial; Dental Caries; Mice; Microbial Sensitivity Tests; Naphthoquinones; Nitric Oxide; Oral Sprays; Periodontal Diseases; Phytochemicals; Plant Exudates; Porphyromonas gingivalis; RAW 264.7 Cells; Streptococcus mutans; Thailand; Xanthones

2018