naphthoquinones has been researched along with jasmonic-acid* in 2 studies
2 other study(ies) available for naphthoquinones and jasmonic-acid
Article | Year |
---|---|
Dynamics of alkannin/shikonin biosynthesis in response to jasmonate and salicylic acid in Lithospermum officinale.
Alkannin/shikonin and their derivatives are specialised metabolites of high pharmaceutical and ecological importance exclusively produced in the periderm of members of the plant family Boraginaceae. Previous studies have shown that their biosynthesis is induced in response to methyl jasmonate but not salicylic acid, two phytohormones that play important roles in plant defence. However, mechanistic understanding of induction and non-induction remains largely unknown. In the present study, we generated the first comprehensive transcriptomic dataset and metabolite profiles of Lithospermum officinale plants treated with methyl jasmonate and salicylic acid to shed light on the underlying mechanisms. Our results highlight the diverse biological processes activated by both phytohormones and reveal the important regulatory role of the mevalonate pathway in alkannin/shikonin biosynthesis in L. officinale. Furthermore, by modelling a coexpression network, we uncovered structural and novel regulatory candidate genes connected to alkannin/shikonin biosynthesis. Besides providing new mechanistic insights into alkannin/shikonin biosynthesis, the generated methyl jasmonate and salicylic acid elicited expression profiles together with the coexpression networks serve as important functional genomic resources for the scientific community aiming at deepening the understanding of alkannin/shikonin biosynthesis. Topics: Acetates; Cyclopentanes; Lithospermum; Mevalonic Acid; Naphthoquinones; Oxylipins; Pharmaceutical Preparations; Plant Growth Regulators; Salicylic Acid | 2022 |
Carnivorous Nepenthes x ventrata plants use a naphthoquinone as phytoanticipin against herbivory.
Carnivorous plants feed on animal prey, mainly insects, to get additional nutrients. This carnivorous syndrome is widely investigated and reported. In contrast, reports on herbivores feeding on carnivorous plants and related defenses of the plants under attack are rare. Here, we studied the interaction of a pitcher plant, Nepenthes x ventrata, with a generalist lepidopteran herbivore, Spodoptera littoralis, using a combination of LC/MS-based chemical analytics, choice and feeding assays. Chemical defenses in N. x ventrata leaves were analyzed upon S. littoralis feeding. A naphthoquinone, plumbagin, was identified in Nepenthes defense against herbivores and as the compound mainly responsible for the finding that S. littoralis larvae gained almost no weight when feeding on Nepenthes leaves. Plumbagin is constitutively present but further 3-fold increased upon long-term (> 1 day) feeding. Moreover, in parallel de novo induced trypsin protease inhibitor (TI) activity was identified. In contrast to TI activity, enhanced plumbagin levels were not phytohormone inducible, not even by defense-related jasmonates although upon herbivory their level increased more than 50-fold in the case of the bioactive jasmonic acid-isoleucine. We conclude that Nepenthes is efficiently protected against insect herbivores by naphthoquinones acting as phytoanticipins, which is supported by additional inducible defenses. The regulation of these defenses remains to be investigated. Topics: Abscisic Acid; Animals; Carnivorous Plant; Cyclopentanes; Diet; Herbivory; Larva; Naphthoquinones; Oxylipins; Phytochemicals; Plant Growth Regulators; Plant Leaves; Protease Inhibitors; Salicylic Acid; Sarraceniaceae; Spodoptera | 2021 |