naphthoquinones and epigallocatechin-gallate

naphthoquinones has been researched along with epigallocatechin-gallate* in 4 studies

Reviews

1 review(s) available for naphthoquinones and epigallocatechin-gallate

ArticleYear
Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Accounts of chemical research, 2014, Feb-18, Volume: 47, Issue:2

    Evolution has fine-tuned proteins to accomplish a variety of tasks. Yet, with aging, some proteins assemble into harmful amyloid aggregates associated with neurodegenerative diseases, such as Alzheimer's disease (AD), which presents a complex and costly challenge to our society. Thus, far, drug after drug has failed to slow the progression of AD, characterized by the self-assembly of the 39-43 amino acid β-amyloid (Aβ) protein into extracellular senile plaques that form a cross-β structure. While there is experimental evidence that the Aβ small oligomers are the primary toxic species, standard tools of biology have failed to provide structures of these transient, inhomogeneous assemblies. Despite extensive experimental studies, researchers have not successfully characterized the nucleus ensemble, the starting point for rapid fibril formation. Similarly scientists do not have atomic data to show how the compounds that reduce both fibril formation and toxicity in cells bind to Aβ42 oligomers. In this context, computer simulations are important tools for gaining insights into the self-assembly of amyloid peptides and the molecular mechanism of inhibitors. This Account reviews what analytical models and simulations at different time and length scales tell us about the dynamics, kinetics, and thermodynamics of amyloid fibril formation and, notably, the nucleation process. Though coarse-grained and mesoscopic protein models approximate atomistic details by averaging out unimportant degrees of freedom, they provide generic features of amyloid formation and insights into mechanistic details of the self-assembly process. The thermodynamics and kinetics vary from linear peptides adopting straight β-strands in fibrils to longer peptides adopting in parallel U shaped conformations in fibrils. In addition, these properties change with the balance between electrostatic and hydrophobic interactions and the intrinsic disorder of the system. However, simulations suggest that the critical nucleus size might be on the order of 20 chains under physiological conditions. The transition state might be characterized by a simultaneous change from mixed antiparallel/parallel β-strands with random side-chain packing to the final antiparallel or parallel states with the steric zipper packing of the side chains. Second, we review our current computer-based knowledge of the 3D structures of inhibitors with Aβ42 monomer and oligomers, a prerequisite for developing new drugs against AD.

    Topics: Amyloid; Amyloid beta-Peptides; Catechin; Computer Simulation; Drug Antagonism; Humans; Kinetics; Models, Molecular; Molecular Sequence Data; Naphthoquinones; Peptide Fragments; Protein Conformation; Thermodynamics; Tryptophan

2014

Other Studies

3 other study(ies) available for naphthoquinones and epigallocatechin-gallate

ArticleYear
Staphylococcus aureus membrane-damaging activities of four phenolics.
    FEMS microbiology letters, 2021, 07-09, Volume: 368, Issue:13

    The membrane-damaging activities of four phenolics chosen for their bactericidal activity against Staphylococcus aureus CNRZ3 were investigated: 5,7-dihydroxy-4-phenylcoumarin (DHPC), 5,8-dihydroxy-1,4-naphthoquinone (DHNQ), epigallocatechin gallate (EGCG) and isobutyl 4-hydroxybenzoate (IBHB). Staphylococcus aureus CNRZ3 cells, as well as model liposomes mimicking its membrane phospholipids composition, were treated with each phenolic at its minimal bactericidal concentration. Membrane integrity, intracellular pH and intracellular esterase activity were examined by flow cytometric analysis of S. aureus cells stained with propidium iodide and SYTO® 9, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester, and 5(6)-carboxyfluorescein diacetate, respectively. While intracellular pH was affected by the foyr phenolics, only DHNQ and to a lesser extent EGCG, caused a loss of membrane integrity. Flow cytometric analysis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and DPPC/POPG (2-oleoyl-1-palmitoyl-sn-glycero-3-phosphoglycerol) liposomes stained with Coumarin 6 (which penetrates the lipid bilayer) or 5-N(octadecanoyl)-amino-fluorescein (which binds to the liposome shell) suggested that only EGCG and DHNQ penetrated the bilayer of phospholipids of liposomes. Taken together, these findings support the hypothesis that EGCG and DHNQ bactericidal activity results from their accumulation in the phospholipid bilayer of S. aureus cells membrane causing its disruption.

    Topics: Anti-Bacterial Agents; Catechin; Cell Membrane; Coumarins; Naphthoquinones; Parabens; Phenols; Staphylococcus aureus

2021
Epigallocatechin gallate inhibits beta amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2010, Volume: 17, Issue:11

    Epidemiological studies have repeatedly demonstrated that green tea protects against oxidative stress involved in many diseases. Health benefits of green tea are attributed to its principal active constituent, epigallocatechin gallate (EGCG). EGCG was shown to increase the stress resistance and lifespan of Caenorhabditis elegans. The mechanism of this action has been investigated in this study. The expression of hsp-16.1 and hsp-16.2 in EGCG-treated worms (N2), as quantified by real-time PCR, was significantly lower under oxidative stress induced by juglone than in controls without EGCG. In the strain TJ356 (DAF-16::GFP) EGCG treatment induced translocation of DAF-16 from the cytoplasm into the nucleus, suggesting that EGCG may affect the daf-2/insulin-like signaling pathway. EGCG decreased the formation of lipofuscin, an aging related pigment. Also, EGCG reduced beta amyloid (Abeta) deposits and inhibited Abeta oligomerization in transgenic C. elegans (CL2006). Thus, the use of green tea and EGCG is apparently rational alternatives for protecting against ROS-mediated and age-related diseases.

    Topics: Amyloid beta-Peptides; Animals; Animals, Genetically Modified; Antioxidants; Biological Transport; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Camellia sinensis; Catechin; Cell Nucleus; Cytoplasm; Heat-Shock Proteins; Insulin; Lipofuscin; Naphthoquinones; Oxidative Stress; Plant Extracts; Polymerization; Receptor, Insulin; Signal Transduction; Somatomedins; Transcription Factors

2010
Cytotoxicity and cytoprotective activity in naphthalenediols depends on their tendency to form naphthoquinones.
    Free radical biology & medicine, 2005, Nov-15, Volume: 39, Issue:10

    We consider the cytotoxicity and the protection against oxidative stress for members of the naphthalenediol family and the known antioxidant epigallocatechin gallate (EGCG). Compounds include the 1,2-naphthalenediol (1,2-ND), 1,4-ND, 2,3-ND, 1,8-ND, and 1,4-dipropyl-2,3-naphthalenediol (DPND). The cell line is an adherent clone of rat pheochromocytoma (PC12-AC). Oxidative stress was induced by the peroxyl radical generator AAPH. The relative order of cytotoxicity was 1,4-ND > 1,2-ND > DPND > 2,3-ND > 1,8-ND > EGCG, with EC(50)'s of 15, 40, 160, >250, >250, >>250 muM, respectively. Despite their high toxicity, both 1,4-ND and 1,2-ND showed narrow zones of protective behavior whereas DPND, 2,3-ND and 1,8-ND and especially EGCG showed an extended protective range. The total protection obtained for the combination of cells/oxidative stressor/protective compounds (PC12-AC/AAPH/naphthalenediols) was defined by an integrated measure, the cytoprotective area (CPA). We relate the observed cytotoxicity and CPA to the different electronic structures of the naphthalenediols, characterized by the first and second bond dissociation enthalpies and the pK(a)'s for parent (diol) and semiquinone. Since the 2,3- and 1,8-naphthalenediols do not form quinones, their cytotoxicity is much lower than for the compounds which do. Thus selected members of the naphthalenediol family show promise as antioxidants.

    Topics: Animals; Antioxidants; Catechin; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Free Radicals; Hot Temperature; Hydrogen-Ion Concentration; Inhibitory Concentration 50; Models, Chemical; Naphthols; Naphthoquinones; Oxidation-Reduction; Oxidative Stress; Quinones; Rats; Tetrazolium Salts; Thiazoles; Time Factors

2005