naphthoquinones has been researched along with entinostat* in 1 studies
1 other study(ies) available for naphthoquinones and entinostat
Article | Year |
---|---|
MS-275 potentiates the effect of YM-155 in lung adenocarcinoma via survivin downregulation induced by miR-138 and miR-195.
YM-155 has been proven to be an efficient antitumor suppressor in non-small cell lung cancer (NSCLC) cells. However, the suppressive effect of YM-155 on the expression of survivin is not sufficient and has a short half-life. MS-275, a histone deacetylase inhibitor, has significant antitumor capacity with a relatively long half-life. Our study explored whether MS-275 could enhance the inhibitory effect of YM-155 on LUAD proliferation.. To investigate the synergistic effect of MS-275 and YM-155, we employed methyl thiazolyl tetrazolium and colony formation assays to access the inhibition effect of MS-275, YM-155, or a combination in A549 and HCC827 cell lines. We then detected the effect of MS-275 and YM-155 on the expression of survivin and pro-apoptotic proteins by Western blot and miR-138 or miR-195 expression by quantitative PCR. We also analyzed the methylation level of microRNAs (miRNAs) using methylation-sensitive quantitative PCR. Finally, we investigated the interaction between miRNAs and survivin by luciferase reporter assay.. MS-275 facilitated an inhibitory effect of YM-155 on lung adenocarcinoma cell proliferation. MS-275 can upregulate the level of acetylated H3, promote the degradation of DNA methyltransferases, and inhibit the methylation of miR-138 and miR-195 genes to elevate the expression of miR-138 and miR-195. Moreover, miR-138 and miR-195 showed a synergistic effect with YM-155 by directly binding to the 3 untranslated region of survivin to attenuate its expression.. For the first time, we report the synergistic effective of MS-275 and YM-155 and suggest a new direction for the future application of YM-155. Topics: A549 Cells; Adenocarcinoma of Lung; Animals; Benzamides; Cell Line, Tumor; Cell Proliferation; Cell Survival; DNA Methylation; Down-Regulation; Drug Synergism; Gene Expression Regulation, Neoplastic; Histones; Humans; Imidazoles; Lung Neoplasms; Mice; MicroRNAs; Naphthoquinones; Pyridines; Survivin; Xenograft Model Antitumor Assays | 2019 |