naphthoquinones and 2-naphthol

naphthoquinones has been researched along with 2-naphthol* in 2 studies

Other Studies

2 other study(ies) available for naphthoquinones and 2-naphthol

ArticleYear
Biodegradation of 2-naphthol and its metabolites by coupling Aspergillus niger with Bacillus subtilis.
    Journal of environmental sciences (China), 2010, Volume: 22, Issue:5

    To explore biodegradation of 2-naphthol and its metabolites accumulated in wastewater treatment, a series of bio-degradation experiments were conducted. Two main metabolites of 2-naphthol, 1,2-naphthalene-diol and 1,2-naphthoquinone, were identified by high-performance liquid chromatography with standards. Combining fungus Aspergillus niger with bacterium Bacillus subtilis in the treatment enhanced 2-naphthol degradation efficiency, lowered the accumulation of the two toxic metabolites. There were two main phases during the degradation process by the kinetic analysis: 2-naphthol was first partly degraded by the fungus, producing labile and easily accumulated metabolites, and then the metabolites were mainly degraded by the bacterium, attested by the degradation processes of 1,2-naphthalene-diol and 1,2-naphthoquinone as sole source of carbon and energy. Sodium succinate, as a co-metabolic substrate, was the most suitable compound for the continuous degradation. The optimum concentration of 2-naphthol was 50 mg/L. The overall 2-naphthol degradation rate was 92%, and the CODcr removal rate was 80% on day 10. These results indicated that high degradation rate of 2-naphthol should not be considered as the sole desirable criterion for the bioremediation of 2-naphthol-contaminated soils/wastewater.

    Topics: Aspergillus niger; Bacillus subtilis; Biodegradation, Environmental; Kinetics; Minerals; Naphthols; Naphthoquinones

2010
In vitro toxicity of naphthalene, 1-naphthol, 2-naphthol and 1,4-naphthoquinone on human CFU-GM from female and male cord blood donors.
    Toxicology in vitro : an international journal published in association with BIBRA, 2008, Volume: 22, Issue:6

    In animal models, naphthalene toxicity has been studied in different target organs and has been shown to be gender-dependent and metabolism related. In humans, it is readily absorbed and is metabolised by several cytochrome P450's. Naphthalene and its metabolites can cross the placental barrier and consequently may affect foetal tissues. The aim of this study was to compare the in vitro toxicity of naphthalene and its metabolites, 1-naphthol, 2-naphthol and 1,4-naphthoquinone, on human haematopoietic foetal progenitors (CFU-GM) derived from newborn male and female donors. The mRNA expression of Cyp1A2 and Cyp3A4 was also evaluated. Naphthalene did not affect CFU-GM proliferation, while 1-naphthol, 2-naphthol and particularly 1,4-naphthoquinone strongly inhibited the clonogenicity of progenitors, from both male and female donors. mRNA of Cyp1A2 and Cyp3A4 was not expressed neither at the basal level, nor after naphthalene treatment, while treatment with 1,4-naphthoquinone induced expression of both enzymes in both genders, with Cyp1A2 being expressed four times more than Cyp3A4. Female CFU-GM was significantly more sensitive to 1,4-naphthoquinone than male and after treatment both enzymes were expressed twice as much as in the male precursors. These results suggest that a gender-specific 1,4-naphthoquinone metabolic pathway may exist, which gives rise to unknown toxic metabolites.

    Topics: Cell Proliferation; Colony-Forming Units Assay; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP3A; Female; Fetal Blood; Gene Expression Regulation, Enzymologic; Hematopoietic Stem Cells; Humans; Infant, Newborn; Male; Naphthalenes; Naphthols; Naphthoquinones; RNA, Messenger; Sex Factors

2008