naphthoquinones and 1-3-dipropyl-8-cyclopentylxanthine

naphthoquinones has been researched along with 1-3-dipropyl-8-cyclopentylxanthine* in 1 studies

Other Studies

1 other study(ies) available for naphthoquinones and 1-3-dipropyl-8-cyclopentylxanthine

ArticleYear
Effects of ethanolic extract and naphthoquinones obtained from the bulbs of Cipura paludosa on short-term and long-term memory: involvement of adenosine A₁ and A₂A receptors.
    Basic & clinical pharmacology & toxicology, 2013, Volume: 112, Issue:4

    Previous studies from our group have indicated important biological properties of the ethanolic extract and isolated compounds from the bulbs of Cipura paludosa (Iridaceae), a native plant widely distributed in northern Brazil, including antioxidant, neuroprotective and anti-nociceptive activities. In the present study, the effects of the ethanolic extract and its two naphthoquinones (eleutherine and isoeleutherine) on the short- and long-term memory of adult rodents were assessed in social recognition and inhibitory avoidance tasks. Acute pre-training oral administration of the ethanolic extract improved the short-term social memory in rats as well as facilitated the step-down inhibitory avoidance short- and long-term memory in mice. Moreover, the co-administration of 'non-effective' doses of the extract of Cipura paludosa and the adenosine receptor antagonists caffeine (non-selective), DPCPX (adenosine A1 receptor antagonist) and ZM241385 (adenosine A2A receptor antagonist) improved the social recognition memory of rats. In the inhibitory avoidance task, the co-administration of sub-effective doses of the extract with caffeine or ZM241385, but not with DPCPX, improved the short- and long-term memory of mice. Finally, the acute oral administration of eleutherine and isoeleutherine facilitated the inhibitory avoidance short- and long-term memory in mice. These results demonstrate for the first time the cognitive-enhancing properties of the extract and isolated compounds from the bulbs of Cipura paludosa in rodents and suggest a possible involvement of adenosine A1 and A2A receptors in these effects.

    Topics: Animals; Avoidance Learning; Brazil; Caffeine; Ethanol; Furans; Iridaceae; Male; Memory, Long-Term; Memory, Short-Term; Mice; Naphthoquinones; Plant Extracts; Plant Roots; Purinergic P1 Receptor Antagonists; Rats; Rats, Wistar; Receptor, Adenosine A1; Receptors, Adenosine A2; Triazines; Triazoles; Xanthines

2013