naltrindole has been researched along with naloxonazine* in 37 studies
37 other study(ies) available for naltrindole and naloxonazine
Article | Year |
---|---|
Opioid system contribution to the antidepressant-like action of m-trifluoromethyl-diphenyl diselenide in mice: A compound devoid of tolerance and withdrawal syndrome.
Animal and clinical researches indicate that the opioid system exerts a crucial role in the etiology of mood disorders and is a target for intervention in depression treatment. This study investigated the contribution of the opioid system to the antidepressant-like action of acute or repeated m-trifluoromethyl-diphenyl diselenide administration to Swiss mice. m-Trifluoromethyl-diphenyl diselenide (50 mg/kg, intragastric) produced an antidepressant-like action in the forced swimming test from 30 min to 24 h after treatment. This effect was blocked by the µ and δ-opioid receptor antagonists, naloxonazine (10 mg/kg, intraperitoneally) and naltrindole (3 mg/kg, intraperitoneally), and it was potentiated by a κ-opioid receptor antagonist, norbinaltrophimine (1 mg/kg, subcutaneously ). Combined treatment with subeffective doses of m-trifluoromethyl-diphenyl diselenide (10 mg/kg, intragastric) and morphine (1 mg/kg, subcutaneously) resulted in a synergistic antidepressant-like effect. The opioid system contribution to the m-trifluoromethyl-diphenyl diselenide antidepressant-like action was also demonstrated in the modified tail suspension test, decreasing mouse immobility and swinging time and increasing curling time, results similar to those observed using morphine, a positive control. Treatment with m-trifluoromethyl-diphenyl diselenide induced neither tolerance to the antidepressant-like action nor physical signs of withdrawal, which could be associated with the fact that m-trifluoromethyl-diphenyl diselenide did not change the mouse cortical and hippocampal glutamate uptake and release. m-Trifluoromethyl-diphenyl diselenide treatments altered neither locomotor nor toxicological parameters in mice. These findings demonstrate that m-trifluoromethyl-diphenyl diselenide elicited an antidepressant-like action by direct or indirect μ and δ-opioid receptor activation and the κ-opioid receptor blockade, without inducing tolerance, physical signs of withdrawal and toxicity. Topics: Analgesics, Opioid; Animals; Antidepressive Agents; Behavior, Animal; Depression; Depressive Disorder; Male; Mice; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Organosilicon Compounds; Receptors, Opioid, kappa; Substance Withdrawal Syndrome; Swimming | 2017 |
Opioid system mediated anti-nociceptive effect of agomelatine in mice.
This study was planned to examine the antinociceptive efficacy of agomelatine against acute mechanical, thermal, and chemical nociceptive stimuli, as well as to determine the opioid receptor subtypes mediating these effects.. Tail-clip, hot-plate, and acetic acid-induced writhing tests were performed to evaluate anti-nociceptive effect. Besides, possible effect of agomelatine on the motor coordination of animals was assessed with a Rota-rod test.. Agomelatine (40mg/kg and 60mg/kg) significantly prolonged the reaction time of mice in both the tail-clip and hot-plate tests, suggesting the antinociceptive activity is related to both spinal and supraspinal mechanisms. This drug also reduced the number of writhing behaviors indicating the presence of a peripherally mediated antinociceptive effect. Rota-rod testing displayed no notable effect on the motor activity of the animal supporting the conclusion that the observed antinociceptive effect is specific. The agomelatine-induced antinociceptive activity abrogated following pretreatment with naloxone (a non-selective opioid receptor antagonist, 5.48mg/kg, i.p.), which suggested the participation of opioid mechanisms to the antinociception. The possible contribution of μ, δ and ҡ subtypes of opioid receptors to the anti-nociceptive effect were evaluated using naloxonazine (7mg/kg, s.c.), naltrindole (0.99mg/kg, i.p.), and nor-binaltorphimine (1.03mg/kg, i.p.), respectively. Pretreatments using these antagonists abolished the antinociceptive activity of agomelatine in all of the nociceptive test paradigms used, which pointed out that μ, δ, and ҡ opioid receptors participated to the action of agomelatine on pain.. These results demonstrated the therapeutic potential of agomelatine in the treatment of pain disorders. Topics: Acetamides; Analgesics; Animals; Dose-Response Relationship, Drug; Injections, Intraventricular; Male; Mice; Motor Activity; Naloxone; Naltrexone; Pain; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Rotarod Performance Test | 2016 |
The opioid system majorly contributes to preference for fat emulsions but not sucrose solutions in mice.
Rodents show a stronger preference for fat than sucrose, even if their diet is isocaloric. This implies that the preference mechanisms for fat and sucrose differ. To compare the contribution of the opioid system to the preference of fat and sucrose, we examined the effects of mu-, delta-, kappa-, and non-selective opioid receptor antagonists on the preference of sucrose and fat, assessed by a two-bottle choice test and a licking test, in mice naïve to sucrose and fat ingestion. Administration of non-selective and mu-selective opioid receptor antagonists more strongly inhibited the preference of fat than sucrose. While the preference of fat was reduced to the same level as water by the antagonist administration that of sucrose was still greater than water. Our results suggest that the preference of fat relies strongly on the opioid system, while that of sucrose is regulated by other mechanisms in addition to the opioid system. Topics: Administration, Oral; Animals; Behavior, Animal; Choice Behavior; Dietary Fats; Eating; Emulsions; Food Preferences; Male; Mice; Mice, Inbred BALB C; Naloxone; Naltrexone; Narcotic Antagonists; Phospholipids; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Soybean Oil; Sucrose | 2015 |
Different types of opioid receptors involved in the suppression of LH secretion in lactating sheep.
To learn the involvement of endogenous opioid peptides (EOP) in the regulation of reproductive activity in ruminants, the effects of different opioid antagonists on luteinizing hormone (LH) secretion were determined in sheep during the early stage of lactation. The opioid receptor antagonists: naloxone (all types of receptors, n=5), naloxonazine (μ receptor, n=5), GNTI- (κ receptor, n=5), naltrindole (δ receptor, n=5) or the vehicle (control, n=5) were infused intracerebroventricularly in a series of five 30-min infusions (60μg/60μl) at 30-min intervals. The period of the experiment included the non-suckling (10:00-12.30) and suckling (12.30-15.00) periods. Blood samples were collected from 10.00 to 15.00 at 10-min intervals, and plasma LH concentration was assayed by the radioimmunoassay method. The obtained results showed that blocking of the EOP action within the central nervous system in lactating sheep caused a significant (p<0.001) increase in LH concentration in all treated groups, in comparison to the control. In the naloxone-treated group, a significant (p<0.05) increase in LH secretion also occurred during suckling. The amplitude of LH pulses increased significantly in the naloxonazine- (p<0.01) and naltrindole- (p<0.05) treated ewes compared to the control; there were no significant differences in the frequency of LH pulses among the groups. In conclusion, our study indicates that EOP play a crucial role in the mechanism inhibiting GnRH/LH axis activity in lactating sheep and that the ligands for μ opioid receptor may have the highest inhibitory effect. Topics: Animals; Female; Gene Expression Regulation; Guanidines; Lactation; Luteinizing Hormone; Morphinans; Naloxone; Naltrexone; Narcotic Antagonists; Receptors, Opioid; Sheep | 2013 |
Antinociceptive action of isolated mitragynine from Mitragyna Speciosa through activation of opioid receptor system.
Cannabinoids and opioids systems share numerous pharmacological properties and antinociception is one of them. Previous findings have shown that mitragynine (MG), a major indole alkaloid found in Mitragyna speciosa (MS) can exert its antinociceptive effects through the opioids system. In the present study, the action of MG was investigated as the antinociceptive agent acting on Cannabinoid receptor type 1 (CB1) and effects on the opioids receptor. The latency time was recorded until the mice showed pain responses such as shaking, licking or jumping and the duration of latency was measured for 2 h at every 15 min interval by hot plate analysis. To investigate the beneficial effects of MG as antinociceptive agent, it was administered intraperitoneally 15 min prior to pain induction with a single dosage (3, 10, 15, 30, and 35 mg/kg b.wt). In this investigation, 35 mg/kg of MG showed significant increase in the latency time and this dosage was used in the antagonist receptor study. The treated groups were administered with AM251 (cannabinoid receptor-1 antagonist), naloxone (non-selective opioid antagonist), naltrindole (δ-opioid antagonist) naloxonazine (μ(1)-receptor antagonist) and norbinaltorpimine (κ-opioid antagonist) respectively, prior to administration of MG (35 mg/kg). The results showed that the antinociceptive effect of MG was not antagonized by AM251; naloxone and naltrindole were effectively blocked; and norbinaltorpimine partially blocked the antinociceptive effect of MG. Naloxonazine did inhibit the effect of MG, but it was not statistically significant. These results demonstrate that CB1 does not directly have a role in the antinociceptive action of MG where the effect was observed with the activation of opioid receptor. Topics: Analgesics; Animals; Cannabinoid Receptor Antagonists; Cannabinoid Receptor Modulators; Male; Mice; Mice, Inbred ICR; Mitragyna; Naloxone; Naltrexone; Narcotic Antagonists; Piperidines; Pyrazoles; Receptors, Cannabinoid; Receptors, Opioid; Secologanin Tryptamine Alkaloids | 2012 |
YFa and analogs: investigation of opioid receptors in smooth muscle contraction.
To study the pharmacological profile and inhibition of smooth muscle contraction by YFa and its analogs in conjunction with their receptor selectivity.. The effects of YFa and its analogs (D-Ala2) YFa, Y (D-Ala2) GFMKKKFMRF amide and Des-Phe-YGGFMKKKFMR amide in guinea pig ileum (GPI) and mouse vas deferens (MVD) motility were studied using an isolated tissue organ bath system, and morphine and DynA (1-13) served as controls. Acetylcholine was used for muscle stimulation. The observations were validated by specific antagonist pretreatment experiments using naloxonazine, naltrindole and norbinaltorphimine norBNI.. YFa did not demonstrate significant inhibition of GPI muscle contraction as compared with morphine (15% vs 62%, P = 0.0002), but moderate inhibition of MVD muscle contraction, indicating the role of κ opioid receptors in the contraction. A moderate inhibition of GPI muscles by (Des-Phe) YFa revealed the role of anti-opiate receptors in the smooth muscle contraction. (D-Ala-2) YFa showed significant inhibition of smooth muscle contraction, indicating the involvement of mainly δ receptors in MVD contraction. These results were supported by specific antagonist pretreatment assays.. YFa revealed its side-effect-free analgesic properties with regard to arrest of gastrointestinal transit. The study provides evidences for the involvement of κ and anti-opioid receptors in smooth muscle contraction. Topics: Acetylcholine; Analgesics, Opioid; Animals; Cholinergic Agonists; Dynorphins; Enkephalin, Methionine; Guinea Pigs; Ileum; Male; Mice; Morphine; Muscle Contraction; Muscle, Smooth; Naloxone; Naltrexone; Narcotic Antagonists; Neurotransmitter Agents; Oligopeptides; Receptors, Opioid; Vas Deferens | 2011 |
Selective mu- and kappa-opioid receptor antagonists administered into the nucleus accumbens interfere with rapid tolerance to ethanol in rats.
Previous findings have shown that intra-accumbens injection of naltrexone, a non-selective opioid antagonist, blocks the acquisition of rapid tolerance to ethanol in rats. This study investigates the effects of intra-accumbens injection of the selective mu-, delta-, and kappa-opioid antagonists, respectively, naloxonazine, naltrindole, and nor-binaltorphimine, on rapid tolerance to ethanol.. Male Wistar rats with guide cannulae directed to the shell or the core portions of the nucleus accumbens received a microinjection of naloxonazine (2-4 microg), naltrindole (2-4 microg), nor-binaltorphimine (2.5-5 microg), or vehicle. After 5 min, each group was divided in two groups that received ethanol (2.7 g/kg i.p.) or saline. Rats were then tested for motor coordination on the tilting plane apparatus. Twenty four hours later, all rats received a challenge dose of ethanol (2.7 g/kg i.p.) and were tested on the tilt plane again.. Repeated injections of ethanol caused a reduction in motor impairment suggesting the development of tolerance. However, rats injected with 4 microg naloxonazine into either core or shell portions of the nucleus accumbens did not exhibit tolerance when challenged with ethanol on day 2. Rats treated with 5 microg nor-binaltorphimine into accumbens core plus intraperitoneal saline on day 1 showed reduced motor impairment when challenged with ethanol on day 2, suggesting cross-tolerance to ethanol.. Taken together, our results suggests that mu-opioid receptors in both shell and core portions of the nucleus accumbens, and possibly kappa-opioid in the core, participate in the modulation of rapid tolerance to ethanol. Topics: Animals; Drug Tolerance; Ethanol; Male; Microinjections; Naloxone; Naltrexone; Narcotic Antagonists; Nucleus Accumbens; Rats; Rats, Wistar; Receptors, Opioid, kappa; Receptors, Opioid, mu | 2009 |
A Tyr-W-MIF-1 analog containing D-Pro2 acts as a selective mu2-opioid receptor antagonist in the mouse.
The antagonistic properties of Tyr-d-Pro-Trp-Gly-NH(2) (d-Pro(2)-Tyr-W-MIF-1), a Tyr-Pro-Trp-Gly-NH(2)(Tyr-W-MIF-1) analog, on the antinociception induced by the mu-opioid receptor agonists Tyr-W-MIF-1, [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), Tyr-Pro-Trp-Phe-NH(2) (endomorphin-1), and Tyr-Pro-Phe-Phe-NH(2) (endomorphin-2) were studied in the mouse paw-withdrawal test. d-Pro(2)-Tyr-W-MIF-1 injected intrathecally (i.t.) had no apparent effect on the thermal nociceptive threshold. d-Pro(2)-Tyr-W-MIF-1 (0.1-0.4 nmol) coadministered i.t. showed a dose-dependent attenuation of the antinociception induced by Tyr-W-MIF-1 without affecting endomorphin- or DAMGO-induced antinociception. However, higher doses of d-Pro(2)-Tyr-W-MIF-1 (0.8-1.2 nmol) significantly attenuated endomorphin-1- or DAMGO-induced antinociception, whereas the antinociception induced by endomorphin-2 was still not affected by d-Pro(2)-Tyr-W-MIF-1. Pretreatment i.t. with various doses of naloxonazine, a mu(1)-opioid receptor antagonist, attenuated the antinociception induced by Tyr-W-MIF-1, endomorphin-1, endomorphin-2, or DAMGO. Judging from the ID(50) values for naloxonazine against the antinociception induced by the mu-opioid receptor agonists, the antinociceptive effect of Tyr-W-MIF-1 is extremely less sensitive to naloxonazine than those of endomorphin-1 or DAMGO. In contrast, endomorphin-2-induced antinociception is extremely sensitive to naloxonazine. The present results clearly suggest that d-Pro(2)-Tyr-W-MIF-1 is the selective antagonist to be identified for the mu(2)-opioid receptor in the mouse spinal cord. d-Pro(2)-Tyr-W-MIF-1 may also discriminate between Tyr-W-MIF-1-induced antinociception and the antinociception induced by endomorphin-1 or DAMGO, all of which show a preference for the mu(2)-opioid receptor in the spinal cord. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Male; Mice; MSH Release-Inhibiting Hormone; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Receptors, Opioid, mu | 2005 |
Differentiation of opioid receptor preference by [Dmt1]endomorphin-2-mediated antinociception in the mouse.
The potent opioid [Dmt1]endomorphin-2 (Dmt-Pro-Phe-Phe-NH2) differentiated between the opioid receptor subtypes responsible for the antinociception elicited by endomorphin-2 in mice. Antinociception, induced by the intracerebroventricular administration of [Dmt1]endomorphin-2 and inhibited by various opioid receptor antagonists [naloxone, naltrindole, beta-funaltrexamine, naloxonazine], was determined by the tail-flick (spinal effect) and hot-plate (supraspinal effect) tests. The opioid receptor subtypes involved in [Dmt1]endomorphin-2-induced antinociception differed between these in vivo model paradigms: naloxone (non-specific opioid receptor antagonist) and beta-funaltrexamine (irreversible mu1/mu2-opioid receptor antagonist) blocked antinociception in both tests, although stronger inhibition occurred in the hot-plate than the tail-flick test suggesting involvement of other opioid receptors. Consequently, we applied naloxonazine (mu1-opioid receptor antagonist) that significantly blocked the effect in the hot-plate test and naltrindole (delta-opioid receptor antagonist), which was only effective in the tail-flick test. The data indicated that [Dmt1]endomorphin-2-induced spinal antinociception was primarily mediated by both mu2- and delta-opioid receptors, while a supraspinal mechanism involved only mu1/mu2-subtypes. Topics: Analgesia; Animals; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Hot Temperature; Injections, Intraventricular; Injections, Subcutaneous; Male; Mice; Naloxone; Naltrexone; Nociceptors; Oligopeptides; Pain; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, mu; Tail; Time Factors | 2005 |
Differential opioid inhibition of C- and A delta- fiber mediated thermonociception after stimulation of the nucleus raphe magnus.
Although the importance of the nucleus raphe magnus in descending inhibitory control of nociception is clear, it is not known whether these effects are equivalent for different types of nociception. Thus, we examined the differential inhibition of behavioral responses evoked by A delta or C fiber thermonociceptor activation by electrical stimulation of nucleus raphe magnus neurons as well as the involvement of different classes of opiate receptors in this inhibition. In general, it was necessary to apply twice as much current to the nucleus raphe magnus to produce criterion antinociception for A delta mediated versus C fiber mediated nociceptive responses. Intrathecal administration of the nonselective opioid receptor antagonist, naltrexone, or the delta(1) opioid receptor antagonist, naltrindole, attenuated both A delta and C fiber antinociception induced by nucleus raphe magnus stimulation with similar efficacy. In contrast, intrathecal administration of naloxonazine, a micro specific opioid receptor antagonist, or naltriben, a delta(2) specific opioid receptor antagonist, preferentially attenuated nucleus raphe magnus induced antinociception for C fiber responses when compared with A delta mediated responses. These findings suggest that nociception evoked by the activation of A delta or C fiber nociceptors is under pharmacologically distinguishable descending control from the nucleus raphe magnus.. Opiates differentially inhibit pain produced by the activation of myelinated or unmyelinated pain sensing neurons, a distinction that is clinically important. This article demonstrates that the brain's own pain control system operates with similar selectivity, and that this selectivity is partly mediated by different opiate receptor subtypes. Topics: Analgesics, Opioid; Animals; Electric Stimulation; Female; Hot Temperature; Injections, Spinal; Naloxone; Naltrexone; Narcotic Antagonists; Nerve Fibers, Myelinated; Nerve Fibers, Unmyelinated; Neural Pathways; Nociceptors; Raphe Nuclei; Rats; Rats, Sprague-Dawley | 2004 |
Effect of selective blockade of mu(1) or delta opioid receptors on reinstatement of alcohol-seeking behavior by drug-associated stimuli in rats.
This study examined the effects of a nonselective opiate antagonist and antagonists selective for the mu(1) versus delta opioid receptor on ethanol-seeking behavior induced by alcohol-related environmental stimuli in an animal model of relapse. Rats were trained to self-administer ethanol (10% w/v) or water on an FR 1 schedule in 30-min daily sessions. The availability of ethanol was signaled by an olfactory discriminative stimulus (S(+)). A different olfactory stimulus (S(-)) signaled water availability. In addition, each lever-response resulting in delivery of ethanol was paired with illumination of a visual cue for 5 s (SC(+)), whereas a 5-s white noise (SC(-)) was associated with water. The rats were then subjected to a 20-day extinction phase where lever presses had no programmed consequences. Reexposure to the S(+)/CS(+) stimulus condition in the absence of further ethanol availability elicited strong recovery of responding. No effect was observed following presentation of S(-)/CS(-). Subsequently, ethanol-seeking behavior associated with the S(+)/CS(+) stimulus condition was studied in rats treated with the nonselective opiate antagonist naltrexone (0.25-1 mg/kg, SC), the delta selective antagonist naltrindole (1-5 mg/kg, IP), and the mu(1) selective antagonist naloxonazine (1-15 mg/kg, IP). Naltrexone (1 mg/kg) and naltrindole (5 mg/kg) selectively inhibited alcohol-seeking behavior. Naloxonazine (15 mg/kg) also reduced ethanol-seeking behavior but produced some nonselective behavioral suppression as well. The results provide evidence that selective blockade of either mu(1) or delta opioid receptors inhibits ethanol-seeking behavior elicited by drug-related environmental stimuli. Moreover, the data suggest that drugs aimed at the delta opioid receptor may offer advantages in the treatment and prevention of relapse compared with agents that also block the mu(1) receptor. Topics: Alcohol Drinking; Analysis of Variance; Animals; Central Nervous System Depressants; Cues; Discrimination, Psychological; Ethanol; Extinction, Psychological; Male; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, mu; Reinforcement, Psychology; Self Administration | 2002 |
Inhibitory effect of intracerebroventricularly-administered [D-Arg(2), beta-Ala(4)]-dermorphin (1-4) on gastrointestinal transit.
The inhibitory effect of intracerebroventricularly-administered [D-Arg(2), beta-Ala(4)]-dermorphin (1-4) (TAPA), a highly selective mu(1)-opioid receptor agonist, on mouse gastrointestinal transit was compared with that of morphine and [D-Ala(2), N-methyl-Phe(4), Gly(5)-ol]-enkephalin (DAMGO). When administered intracerebroventricularly 5 min before the oral injection of charcoal meal, TAPA (10-100 pmol), morphine (0.25-4 nmol), and DAMGO (20-80 pmol) dose-dependently inhibited gastrointestinal transit of charcoal. The inhibitory effect of each mu-opioid receptor agonist was completely antagonized by naloxone, a nonselective opioid receptor antagonist. The inhibitory effects of morphine and DAMGO were significantly antagonized by both beta-funaltrexamine, a selective mu-opioid receptor antagonist, and naloxonazine, a selective mu(1)-opioid receptor antagonist. In contrast, the inhibitory effect of TAPA was not affected at all by beta-funaltrexamine, naloxonazine, nor-binaltorphimine (a selective kappa-opioid receptor antagonist), or naltrindole (a selective delta-opioid receptor antagonist). These results suggest that the inhibitory effect of TAPA on gastrointestinal transit may be mediated through an opioid receptor mechanism different from that of morphine and DAMGO. Topics: Analgesics; Animals; Charcoal; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Female; Gastrointestinal Transit; Injections, Intraventricular; Mice; Mice, Inbred Strains; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides | 2000 |
The effects of highly selective opioid receptor antagonists on the release of arginine vasotocin induced by hyperosmotic stimulation and angiotensin II injection.
The effects of highly selective antagonists to mu-, delta-, and kappa-opioid receptor subtypes on hyperosmotic- or angiotensin II (AII)-induced arginine vasotocin (AVT) release were investigated in chicks. Plasma levels of AVT increased about 1.5-fold after the administration of 1.5 M NaCl (200 microl, ip) or 100 ng AII (5 microl, icv). The administration of the mu-antagonist naloxonazine and the kappa-antagonist nor-Binaltorphimine further elevated plasma levels of AVT stimulated by hypertonic NaCl or AII. These effects of mu- and kappa-opioid receptor antagonists on AVT release were dose dependent. Nor-Binaltorphimine enhanced hyperosmotically stimulated plasma levels of AVT at a lower dose than that of naloxonazine. Conversely, the delta-selective antagonist naltrindole did not significantly affect AVT secretion. None of the opioid receptor antagonists influenced basal plasma levels of AVT. Therefore, these results suggest that mu- and kappa-opioid receptors are involved in hyperosmotic- and AII-induced AVT release, and the effect of the kappa-opioid receptor antagonist in the AVT release stimulated by hyperosmolality is strong compared to that of the mu-opioid receptor antagonist. Topics: Angiotensin II; Animals; Chickens; Male; Naloxone; Naltrexone; Narcotic Antagonists; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Saline Solution, Hypertonic; Vasotocin | 2000 |
Involvement of central opioid systems in human interferon-alpha induced immobility in the mouse forced swimming test.
1. We investigated the mechanism by which human interferon-alpha (IFN-alpha) increases the immobility time in a forced swimming test, an animal model of depression. 2. Central administration of IFN-alpha (0.05 - 50 IU per mouse, i.cist.) increased the immobility time in the forced swimming test in mice in a dose-dependent manner. 3. Neither IFN-beta nor -gamma possessed any effect under the same experimental conditions. 4. Pre-treatment with an opioid receptor antagonist, naloxone (1 mg kg(-1), s.c.) inhibited the prolonged immobility time induced by IFN-alpha (60 KIU kg(-1), i.v. or 50 IU per mouse. i.cist. ). 5. Peripheral administration of naloxone methiodide (1 mg kg(-1), s. c.), which does not pass the blood - brain barrier, failed to block the effect of IFN-alpha, while intracisternal administration of naloxone methiodide (1 nmol per mouse) completely blocked. 6. The effect of IFN-alpha was inhibited by a mu(1)-specific opioid receptor antagonist, naloxonazine (35 mg kg(-1), s.c.) and a mu(1)/mu(2) receptor antagonist, beta-FNA (40 mg kg(-1), s.c.). A selective delta-opioid receptor antagonist, naltrindole (3 mg kg(-1), s.c.) and a kappa-opioid receptor antagonist, nor-binaltorphimine (20 mg kg(-1), s.c.), both failed to inhibit the increasing effect of IFN-alpha. 7. These results suggest that the activator of the central opioid receptors of the mu(1)-subtype might be related to the prolonged immobility time of IFN-alpha, but delta and kappa-opioid receptors most likely are not involved. Topics: Animals; Behavior, Animal; Dose-Response Relationship, Drug; Interferon-alpha; Interferon-beta; Interferon-gamma; Male; Mice; Motor Activity; Naloxone; Naltrexone; Narcotic Antagonists; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Swimming; Time Factors | 2000 |
Selectivity of mu-opioid receptor determined by interfacial residues near third extracellular loop.
We hypothesized that the selectivity profile of the rat mu-opioid receptor for opioid receptor-selective ligands is determined by the nature of the amino acid residues at highly divergent sites in the ligand-binding pocket. To determine which characteristics of these residues contribute to opioid receptor ligand selectivity, we made various mutant receptors that replaced the Lys(303) and Trp(318) residues near the extracellular interface of transmembrane domains VI and VII, respectively. Ligand binding determinations using transiently transfected monkey kidney epithelial (COS-1) cells show that Lys(303) mutations cause little change in the receptor binding profile, whereas the Trp(318) mutant receptors have considerably lower affinity for micro-opioid receptor-selective ligands and greatly increased affinity for delta-opioid receptor-selective ligands. The nature of these mutations show that this effect is not due to sterics or charge alone. [35S]guanosine-5'-O-(3-thio)-triphosphate ([35S]GTPgammaS) activity assays show that these residues may influence functional, as well as binding selection. We conclude that a primary role for Trp(318) is to form a basis for ligand selectivity. Topics: Amino Acid Substitution; Animals; Benzamides; Benzomorphans; Binding Sites; Binding, Competitive; COS Cells; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Fentanyl; Guanosine 5'-O-(3-Thiotriphosphate); Ligands; Morphine; Mutation; Naloxone; Naltrexone; Narcotic Antagonists; Peptides; Piperazines; Protein Conformation; Radioligand Assay; Rats; Receptors, Opioid, mu; Signal Transduction; Sulfur Radioisotopes | 2000 |
Antinociceptive properties of FR140423 mediated through spinal delta-, but not mu- and kappa-, opioid receptors.
We investigated the antinociceptive effect of FR140423, 3-(difluoromethyl)-1-(4-methoxyphenyl)-5-[4-(methylsulfinyl)phenyl] pyrazole, in the tail-pinch test in mice, and evaluated the mechanism of action using various opioid receptor antagonists. P.o. and i.t. injection of FR140423 exerted dose-dependent antinociceptive activities with ED50 values of 21 mg/kg and 3.1 microg/mouse, respectively. However, i.c.v. injection of FR140423 did not show an antinociceptive effect. The antinociceptive effects of FR140423 were completely abolished by naloxone and naltrindole but not by naloxonazine, beta-funaltrexamine and nor-binaltorphimine. FR140423 did not affect any opioid receptor binding in mouse spinal membranes at concentrations up to 100 microM in vitro. Naloxone-induced jumping and diarrhea tests for morphine-like physical dependence of FR140423 gave negative results. These results suggest that FR140423 can induce antinociception by acting on the spinal but not the supraspinal site, and that spinal delta-opioid systems indirectly play a role in the antinociception produced by FR140423 in mice. Topics: Administration, Oral; Analgesics; Animals; Anti-Inflammatory Agents, Non-Steroidal; Behavior, Animal; Binding, Competitive; Diarrhea; Injections, Intraventricular; Injections, Spinal; Male; Membranes; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Pain Measurement; Pyrazoles; Rats; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Spinal Cord; Sulfoxides | 1999 |
Morphine-6-glucuronide-induced locomotor stimulation in mice: role of opioid receptors.
Morphine-6beta-glucuronide is a major metabolite of morphine with potent analgesic actions. To explore the importance of this opiate when administered as a drug by its own or in morphine action, we studied the locomotor activity response to morphine and morphine-6-glucuronide in drug-naive C57 BL/6JBom mice. The effects of administration of the two opiates on a battery of 7 different locomotor activities were studied and compared to saline controls. A dose of 20 micromol/kg morphine-6-glucuronide resulted in more locomotion than the same dose of morphine, while at higher doses (up to 120 micromol/kg), similar increases for most locomotor behaviours were recorded for both drugs. Pretreatment with naltrindole indicated that the delta-receptors play an equivalent but minor role in mediating both morphine-6-glucuronide and morphine hyperlocomotion. Administration of high naltrexone doses (10 mg/kg) completely abolished the locomotor stimulation induced by both opiates. However, at intermediate naltrexone doses of 0.25 and 0.5 mg/kg, morphine-induced behaviours was completely inhibited while morphine-6-glucuronide induced behaviours demonstrated partial resistance to naltrexone inhibition. The mu1-specific receptor antagonist naloxonazine caused 75% reduction of morphine induced behaviours and only 50% inhibition of morphine-6-glucuronide induced behaviors. Taken together our observations indicated general similarity but also marked differences between morphine and morphine-6-glucuronide with respect to opiate receptors mediating the locomotor stimulatory effect. Topics: Analgesics, Opioid; Analysis of Variance; Animals; Dose-Response Relationship, Drug; Male; Mice; Mice, Inbred C57BL; Morphine; Morphine Derivatives; Motor Activity; Naloxone; Naltrexone; Narcotic Antagonists; Receptors, Opioid | 1998 |
Identification of opioid receptor subtypes in antinociceptive actions of supraspinally-administered mitragynine in mice.
Mitragynine (MG), a major alkaloidal constituent extracted from the plant Mitragyna speciosa Korth, is known to exert an opioid-like activity. Our previous study showed the involvement of opioid systems in the antinociceptive activity of MG in the tail-pinch and hot-plate tests in mice. In the present study, to clarify the opioid receptor subtypes involved in the antinociceptive action of MG, we investigated the effects of selective antagonists for mu-, delta- and kappa- opioid receptors on antinociception caused by the intracerebroventricular (i.c.v.) injection of MG in the tail-pinch and hot-plate tests in mice. The coadministration of a selective mu-opioid antagonist, cyprodime (1-10 microg, i.c.v.) and the pretreatment with a selective mu1-opioid antagonist naloxonazine (1-3 microg, i.c.v.) significantly antagonized the antinociceptive activities of MG (10 microg, i.c.v.) and morphine (MOR, 3 microg, i.c.v.) in the tail-pinch and hot-plate tests. Naltrindole (1-5 ng, i.c.v.), a selective delta-opioid antagonist, also blocked the effects of MG (10 microg, i.c.v.) without affecting MOR (3 microg, i.c.v.) antinociception. Nor-binaltorphimine, a selective kappa-opioid antagonist, significantly attenuated MG (10 microg, i.c.v.) antinociception in the tail-pinch test but not in the hot-plate test at the dose (1 microg, i.c.v.) that antagonized the antinociceptive effects of the selective kappa-opioid agonist U50,488H in both tests, while it had no effect on MOR antinociception in either tests. These results suggest that antinociception caused by i.c.v. MG is dominantly mediated by mu- and delta-opioid receptor subtypes, and that the selectivity of MG for the supraspinal opioid receptor subtypes differs from that of MOR in mice. Topics: Analgesics; Animals; Drug Synergism; Injections, Intraventricular; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptors; Pain Measurement; Receptors, Opioid; Receptors, Opioid, mu; Secologanin Tryptamine Alkaloids | 1998 |
Heroin antinociception changed from mu to delta receptor in streptozotocin-treated mice.
CD-1 mice were treated intravenously with streptozotocin, 200 mg/kg, and tested 2 weeks later or treated with 60 mg/kg and tested 3 days later. Both treatments changed the tail flick response of heroin and 6-monoacetylmorphine (6 MAM) given intracerebroventricularly from a mu- to delta-opioid receptor-mediated action as determined by differential effects of opioid receptor antagonists. The response to morphine remained mu. Heroin and 6 MAM responses involved delta1 (inhibited by 7-benzylidenenaltrexone) and delta2 (inhibited by naltriben) receptors, respectively. These delta-agonist actions did not synergize with the mu-agonist action of morphine in the diabetic mice. The expected synergism between the delta agonist, [D-Pen2-D-Pen5]enkephalin (DPDPE), and morphine was not obtained in diabetic mice. Thus, diabetes disrupted the purported mu/delta-coupled response. In nondiabetic CD-1 mice, heroin and 6 MAM produced a different mu-receptor response (not inhibited by naloxonazine) from that of morphine (inhibited by naloxonazine). Also, these mu actions, unlike that of morphine, did not synergize with DPDPE. The unique receptor actions and changes produced by streptozotocin suggest that extrinsic in addition to genetic factors influence the opioid receptor selectivity of heroin and 6 MAM. Topics: Analgesics, Opioid; Animals; Anti-Bacterial Agents; Benzylidene Compounds; Diabetes Mellitus, Experimental; Dose-Response Relationship, Drug; Drug Interactions; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Heroin; Injections, Intraventricular; Male; Mice; Morphine; Morphine Derivatives; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptors; Pain; Receptors, Opioid, delta; Receptors, Opioid, mu; Streptozocin; Time Factors | 1998 |
Involvement of opioid mu 1 receptors in morphine-induced conditioned place preference in rats.
The main purpose of this study was to evaluate the role of mu 1-opioid receptors in morphine reward. Therefore, we studied the ability of a mu 1-selective antagonist, naloxonazine [15 mg/kg intraperitoneally (IP)], to antagonize the conditioned place preference (CPP) induced by morphine [3 mg/kg subcutaneously (SC)]. In addition, effects of naloxonazine on morphine-induced catalepsy (15 mg/kg), analgesia (3 mg/kg), and hyperthermia (3 mg/kg) were studied. For comparison, the effects of a nonselective opioid receptor antagonist, naltrexone (2.5 mg/kg SC), and a selective delta-opioid receptor antagonist, naltrindole (2 mg/kg IP), on CPP induced by morphine were investigated. Morphine-induced CPP was clearly antagonized by pretreatment with naloxonazine and naltrexone (12 h and 20 min prior to morphine, respectively) but not by naltrindole (15 min before morphine). Naloxonazine also antagonized morphine-induced catalepsy and analgesia but not morphine-induced hyperthermia. Naltrindole did not modify morphine-induced catalepsy. These results suggest an active role for mu 1-opioid receptors in morphine reward, whereas morphine-induced hyperthermia does not appear to be mediated by mu 1-opioid receptors. Furthermore, delta-opioid receptors seem to be without significance in morphine-induced reward. Topics: Analgesics, Opioid; Animals; Body Temperature; Catalepsy; Conditioning, Operant; Male; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Pain Measurement; Rats; Rats, Wistar; Receptors, Opioid, mu | 1997 |
Conditioned immunomodulation: investigations of the role of endogenous activity at mu, kappa, and delta opioid receptor subtypes.
The present investigations were designed to determine the role of activity at mu, kappa, and delta opioid receptor subtypes in conditioned immunomodulation by evaluating the effects of selective opioid receptor antagonists on conditioned stimulus-induced alterations in immune status. Lewis rats were exposed to an aversive conditioned stimulus that was developed through pairings with electric footshock. This aversive conditioned stimulus induces a reduction in splenic natural killer cell activity, splenocyte proliferation in response to mitogens, and diminished levels of interferon-gamma (IFN-gamma) production by splenocytes. Intracerebroventricular (i.c.v.) administration of the opioid antagonist naltrexone or the mu 1-selective antagonist naloxonazine blocked conditioned alterations of immune status, indicating that activity at mu-opioid receptors is involved in conditioned immunomodulation. Further support for the involvement of mu-opioid receptors within the central nervous system is provided by data showing that peripheral administration of naloxonazine, at doses shown to be effective when administered i.c.v., had no effect on conditioned alterations of immune status. Ventricular administration of the kappa receptor antagonist nor-binaltorphimine (nor-BNI) did not antagonize the immunomodulatory effects of the conditioned stimulus. Administration of the delta receptor antagonist naltrindole also did not antagonize the conditioned alterations of immune status. Collectively, the results of this study indicate that the alterations of immune status produced by an aversive conditioned stimulus require activity at mu-opioid receptors, possibly mu 1, within the central nervous system. Topics: Animals; Avoidance Learning; Cell Division; Conditioning, Classical; Electroshock; Immune System; Killer Cells, Natural; Lipopolysaccharides; Male; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Inbred Lew; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Spleen | 1997 |
Antinociceptive and behavioral effects of synthetic deltorphin analogs.
A possible correlation of behavioral, antinociceptive and cataleptic responses with central delta- and mu-opioid receptor stimulation was tested for in the rat by i.c.v. injections of some synthetic deltorphin analogs. At doses ranging from 0.1 to 3.0 nmol/rat, the selective delta-opioid receptor agonist, [D-Ala2,Glu4]deltorphin (Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH2), induced a dose-dependent stereotyped pattern of locomotor activity, reaching the maximum in the first 30 min; doses higher than 30 nmol induced early and fleeting antinociception. The replacement of Glu4 by Gly, Ala, Val, His or Asn yielded peptides with a lower delta-selectivity because of a gain in mu-affinity. [D-Ala2,Ala4]deltorphin (0.14-4.0 nmol) induced negligible behavioral stimulation but a rapidly appearing and long-lasting analgesia and catalepsy. The other four synthetic peptides induced biphasic effects: low dosages stimulated locomotion whereas higher doses initially suppressed, then increased locomotor activity. At doses ranging from 1 to 70 nmol all the peptides induced analgesia and catalepsy. In experiments examining the locomotor and antinociceptive effects induced by 14 nmol of [D-Ala2,Gly4]deltorphin in rats pretreated with mu and delta antagonists, the non-selective mu-opioid receptor antagonist, naloxone (1 mg/kg i.p.), reduced analgesia and abolished the initial hypolocomotion. The delta-selective antagonist, naltrindole (10 mg/kg i.p.), abolished locomotor activity without affecting analgesia. The mu1 -selective antagonist, naloxonazine (10 mg/kg i.v.), seemed to prolong analgesia and immobility. Hence this peptide appears to activate, in addition to delta-receptors, mainly the opioid receptor mu2-subtype, which mediates catalepsy in the rat. We suggest that the mu2- and delta-opioid receptors of the rat brain modulate locomotor behavior by activating functionally opposed responses. [D-Ala2,Ala4]deltorphin had an antinociceptive and cataleptic potency higher than would have been expected from its mu-affinity. A possible explanation might be a mu/delta-opioid receptor interaction. Topics: Analysis of Variance; Animals; Catalepsy; Dose-Response Relationship, Drug; Injections, Intraventricular; Locomotion; Male; Motor Activity; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, mu | 1996 |
Alcohol drinking is reduced by a mu 1- but not by a delta-opioid receptor antagonist in alcohol-preferring rats.
To assess the roles of opioid receptor subtypes in voluntary alcohol drinking, alcohol-preferring AA (Alko, Alcohol) rats, non-deprived of food or water, were used in a paradigm where access to 10% alcohol solution was limited to 1-4-h sessions on every 2nd working day. The delta-opioid receptor antagonist naltrindole (1-5 mg/kg i.p. 15 min before the session) had no effect on alcohol drinking, while it attenuated the delta-opioid receptor agonist [D-Pen2, D-Pen5]enkephalin-induced locomotor stimulation. The mu1-opioid receptor antagonist naloxonazine (1-15 mg/kg i.p. 20 h before the session), at the largest dose, decreased alcohol drinking. It also decreased food intake. When naltrindole (1 mg/kg) and naloxonazine (15 mg/kg) were given prior to 3 consecutive sessions, the former had no effects at any session. Naloxonazine decreased alcohol consumption only in the 1st session, although the reduction of daily water intake became stronger during repeated administration. 4 days after the last drug administration, naloxonazine-treated animals consumed alcohol nearly twice as much as in the control session before any drug treatment. These data suggest that delta-opioid receptors are not involved in the regulation of alcohol drinking in AA rats. mu1-Opioid receptors may be involved in alcohol drinking, although the data suggest that even their prolonged blockade alone is insufficient to induce a sustained decrease in alcohol drinking. Topics: Alcohol Drinking; Animals; Dose-Response Relationship, Drug; Drinking; Eating; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Injections, Intraperitoneal; Male; Motor Activity; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Inbred Strains; Receptors, Opioid, delta; Receptors, Opioid, mu | 1996 |
Different central opioid receptor subtype antagonists modify maltose dextrin and deprivation-induced water intake in sham feeding and sham drinking rats.
Different central opioid receptor subtypes participate in the mediation of intakes of simple (sucrose: mu, kappa 1) and complex (maltose dextrin: mu) carbohydrates as well as deprivation-induced water intake (mu) under real-feeding and real-drinking conditions. An identical pattern of mu and kappa 1 mediation of sucrose intake was observed in sham-feeding rats as well, suggesting their actions on orosensory mechanisms supporting sucose intake. The present study examined whether centrally administered general (naltrexone: 1-50 micrograms), mu (beta-funaltrexamine: 1-20 micrograms), mu 1 (naloxonazine: 50 micrograms), kappa 1 (nor-binaltorphamine: 1-20 micrograms), delta 1 ([D-Ala2, Leu5, Cys6]-enkephalin: 10-40 micrograms) or delta 2 (naltrindole isothiocyanate: 20 micrograms) opioid subtype antagonists altered either maltose dextrin (10%) intake during sham feeding or deprivation (24 h)-induced water intake during sham drinking in rats with gastric fistulas. Sham feeding significantly increased maltose dextrin intake (180%) and sham drinking significantly increased deprivation-induced water intake (256%) over a 60 min time course. Naltrexone significantly and dose-dependently reduced maltose dextrin intake (78%) in sham feeding rats, and deprivation-induced water intake (51%) in sham drinking rats. Maltose dextrin intake in sham feeding rats was significantly reduced by either kappa 1 (69%) or delta 1 (59%) opioid antagonism, was significantly increased by mu 1 antagonism (43%), and was not significantly affected by either mu or delta 2 opioid antagonism. Deprivation-induced water intake in sham drinking rats was significantly reduced by either mu (41%), mu 1 (28%), delta 1 (48%) or delta 2 (28%) opioid antagonism, but was not significantly affected by kappa 1 opioid antagonism. The difference in opioid receptor subtype mediation of maltose dextrin intake in real feeding and sham feeding conditions suggest that kappa 1 and delta 1 receptors are involved in the orosensory mechanisms supporting maltose dextrin intake, while mu receptors are involved in the ingestive and post-ingestive mechanisms supporting maltose dextrin intake. The different patterns of opioid involvement in sucrose and maltose dextrin intake in sham feeding and real feeding conditions provide further support for the hypothesis that at least two different carbohydrate taste systems exist. The difference in opioid receptor subtype mediation of deprivation-induced water intake in real drink Topics: Animals; Dose-Response Relationship, Drug; Drinking; Eating; Enkephalin, Leucine-2-Alanine; Injections, Intraventricular; Male; Naloxone; Naltrexone; Narcotic Antagonists; Polysaccharides; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Water Deprivation | 1996 |
Selective actions of central mu and kappa opioid antagonists upon sucrose intake in sham-fed rats.
Intake of a palatable sucrose solution in real-fed rats is mediated in part by central mu and kappa opioid receptors. Since general opioid antagonists still inhibit sucrose intake in sham-fed rats, the present study examined whether centrally administered mu (beta-funaltrexamine: 5, 20 micrograms), mu1 (naloxonazine: 50 micrograms), kappa (nor-binaltorphamine: 1, 5, 20 micrograms), delta (naltrindole: 20 micrograms) or delta 1 (DALCE: 40 micrograms) opioid subtype antagonists altered sucrose intake in sham-fed rats in a similar manner to systemic naltrexone (0.01-1 mg/kg) and whether such effects were equivalent to altering the sucrose concentration. Sucrose (20%) intake in sham-fed rats was significantly and dose-dependently reduced by naltrexone (59%), beta-funaltrexamine (44%) and nor-binaltorphamine (62%), but not by naloxonazine, naltrindole or DALCE. The reductions in sham sucrose (20%) intake by general, mu and kappa antagonism were similar in pattern and magnitude to diluting sucrose concentration from 20% to 10% in untreated sham-fed rats. Since both real-fed and sham-fed rats share similar patterns of specificity of opioid effects, magnitudes and potencies of inhibition, it suggests that central mu and kappa antagonism acts on orosensory mechanisms supporting sucrose intake. Topics: Animals; Cerebral Ventricles; Eating; Enkephalin, Leucine-2-Alanine; Infusions, Parenteral; Male; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Sucrose | 1995 |
Analysis of central opioid receptor subtype antagonism of hypotonic and hypertonic saline intake in water-deprived rats.
Intake of either hypotonic or hypertonic saline solutions is modulated in part by the endogenous opioid system. Morphine and selective mu and delta opioid agonists increase saline intake, while general opioid antagonists reduce saline intake in rats. The present study evaluated whether intracerebroventricular administration of general (naltrexone) and selective mu (beta-funaltrexamine, 5-20 micrograms), mu, (naloxonazine, 50 micrograms), kappa (nor-binaltorphamine, 5-20 micrograms), delta (naltrindole, 20 micrograms), or delta 1 (DALCE, 40 micrograms) opioid receptor subtype antagonists altered water intake and either hypotonic (0.6%) or hypertonic (1.7%) saline intake in water-deprived (24 h) rats over a 3-h time course in a two-bottle choice test. Whereas peripheral naltrexone (0.5-2.5 mg/kg) significantly reduced water intake and hypertonic saline intake, central naltrexone (1-50 micrograms) significantly reduced water intake and hypotonic saline intake. Water intake was significantly reduced following mu and kappa receptor antagonism, but not following mu 1, delta, or delta 1 receptor antagonism. In contrast, neither hypotonic nor hypertonic saline intake was significantly altered by any selective antagonist. These data are discussed in terms of opioid receptor subtype control over saline intake relative to the animal's hydrational state and the roles of palatability and/or salt appetite. Topics: Animals; Enkephalin, Leucine-2-Alanine; Hypotonic Solutions; Injections, Intraventricular; Male; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Saline Solution, Hypertonic; Water Deprivation | 1995 |
Unexpected prosecretory action component of loperamide at mu-opioid receptors in the guinea-pig colonic mucosa in vitro.
1. In a voltage clamp setting (Ussing chamber), the antidiarrhoeal drug, loperamide (Lop) slightly augmented prostaglandin E1 (PGE1) plus theophylline-stimulated net chloride secretion above control values at low concentrations (10(-10) and 10(-9) M) but inhibited it at higher concentrations (10(-6) and 10(-5) M). The apparently weak prosecretory action component of Lop was turned into a clear cut antisecretory effect by pretreatment with 2 x 10(-7) M naloxonazine plus 10(-7) M CTOP-NH2 (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2), two selective mu opioid receptor antagonists. This indicates a prosecretory effect of loperamide at mu opioid receptors. The antisecretory effect of low Lop concentrations, uncovered by mu opioid receptor blockade, was prevented by additional blockade of kappa opioid receptors by 5 x 10(-9) M nor-binaltorphimine (nor-BNI). 2. The nonselective opioid antagonist, naloxone, at 10(-6) M did not significantly reduce either PGE1 plus theophylline-stimulated net chloride secretion in Lop-free controls or the antisecretory action of Lop. By contrast, the partial agonist ethylketocyclazocine (EKC), which activates kappa but blocks mu opioid receptors, concentration-dependently inhibited PGE1 plus theophylline-stimulated net chloride secretion without any consistent prosecretory action component. Nor-BNI at 5 x 10(-8) M significantly blocked the antisecretory action of EKC. 3. It is concluded that, in the guinea-pig colonic mucosa under the present conditions, mu opioid receptors mediate enhancement and kappa opioid receptors inhibition of PGE1-stimulated net chloride secretion by low Lop concentrations. The two opposite actions are largely masked by superimposition. An opioid receptor-independent mechanism of action contributes to the antisecretory effect of Lop at high concentrations. Topics: Alprostadil; Amino Acid Sequence; Animals; Chlorides; Colon; Dose-Response Relationship, Drug; Ethylketocyclazocine; Guinea Pigs; Intestinal Mucosa; Loperamide; Male; Molecular Sequence Data; Naloxone; Naltrexone; Patch-Clamp Techniques; Receptors, Opioid, delta; Receptors, Opioid, mu; Somatostatin; Theophylline | 1995 |
Antinociceptive effect of dihydroetorphine in diabetic mice.
The antinociceptive potency of dihydroetorphine in diabetic mice was examined. Subcutaneous administration of dihydroetorphine produced a dose-dependent antinociception in both non-diabetic and diabetic mice. The antinociceptive potency of s.c. dihydroetorphine was less in diabetic mice than in non-diabetic mice. The antinociception induced by i.c.v. dihydroetorphine (0.02 microgram) was also significantly less in diabetic mice than in non-diabetic mice. The antinociceptive effects of dihydroetorphine (10 micrograms/kg i.p.) in both diabetic and non-diabetic mice were significantly antagonized by s.c. administration of beta-funaltrexamine, a selective mu-opioid receptor antagonist. Furthermore, the antinociceptive effect of dihydroetorphine (10 micrograms/kg i.p.) in non-diabetic mice, but not in diabetic mice, was also significantly antagonized by naloxonazine, a selective mu 1-opioid receptor antagonist. The time course and the potency of the antinociceptive effect of dihydroetorphine (10 micrograms/kg i.p.) in diabetic mice were similar to those in naloxonazine-treated non-diabetic mice. Naltrindole, a selective delta-opioid receptor antagonist, or nor-binaltorphimine, a selective kappa-opioid receptor antagonist, had no significant effect on the antinociceptive effect of dihydroetorphine (10 micrograms/kg i.p.) in both diabetic and non-diabetic mice. These results suggest that dihydroetorphine produces an antinociceptive effect through the activation of both mu 1- and mu 2-opioid receptors in mice. Furthermore, the reduction in dihydroetorphine-induced antinociception in diabetic mice, as compared with non-diabetic mice, may be due to the hyporesponsive to supraspinal mu 1-opioid receptor-mediated antinociception in diabetic mice. Topics: Analgesia; Analgesics, Opioid; Animals; Binding, Competitive; Diabetes Mellitus, Experimental; Dose-Response Relationship, Drug; Etorphine; Injections, Intraperitoneal; Injections, Intraventricular; Injections, Subcutaneous; Male; Mice; Mice, Inbred ICR; Naloxone; Naltrexone; Narcotic Antagonists; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, mu | 1995 |
Effects of selective opioid receptor antagonists on morphine-induced changes in striatal and limbic dopamine metabolism.
The effects of selective opioid receptor antagonists, beta-funaltrexamine (selective for mu receptor), naloxonazine (microliter) and naltrindole (delta) on morphine-induced changes in striatal and limbic dopamine (DA) metabolism were studied in rats. beta-Funaltrexamine (20 micrograms intracerebroventricularly) and naloxonazine (15 mg/kg intraperitoneally) were given 24 hr before morphine (15 mg/kg subcutaneously), and the rats were decapitated 60 min. after morphine. Naltrindole (1 mg/kg intraperitoneally) was given twice, 15 min. before and after morphine. Morphine significantly increased the concentrations of DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). This effect was significantly antagonized by pretreatment with beta-funaltrexamine but not by naloxonazine or naltrindole. However, naloxonazine attenuated the antinociceptive effect of morphine in the hot-plate test. The concentration of DA was not significantly altered by any of the drugs studied. These results show that selective blockade of mu-opioid receptors totally blocks the increase of striatal and limbic DA metabolism induced by morphine. It seems that mu 2-subtype of mu-opioid receptor predominantly mediates this effect. Blockade of delta-opioid receptor did not alter these effects of morphine. Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Corpus Striatum; Dopamine; Homovanillic Acid; Injections, Intraperitoneal; Injections, Intraventricular; Limbic System; Male; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Narcotics; Pain Threshold; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, mu | 1995 |
Differential regulation of adenylyl cyclase activity by mu and delta opioids in rat caudate putamen and nucleus accumbens.
The regulation of adenylyl cyclase by opioid receptor types was characterized in the rat nucleus accumbens, a brain region that is involved in the reinforcing effects of drugs of abuse, and in the caudate putamen, a region not implicated in drug reinforcement. Both mu and delta opioid ligands inhibited adenylyl cyclase activity in the nucleus accumbens and in the caudate putamen of rat, whereas the kappa agonist, U69,593 (5 alpha, 7 alpha, 8 alpha)-(+)-N-methyl-N-[7-(pyrrolidinyl)-1-oxaspiro [4,5]dec-8-yl]-benzeneacetamide, was ineffective. The mu agonists, DAMGO and Tyr-D-Arg-Phe-Sar, were more potent inhibitors of the enzyme in caudate putamen than in nucleus accumbens. The delta-selective agonists, DSLET and [D-Ala2]-deltorphin II more potently inhibited adenylyl cyclase in nucleus accumbens than in caudate putamen. Inhibition of the enzyme by DAMGO and Tyr-D-Arg-Phe-Sar was antagonized by the mu-selective competitive antagonist, CTOP D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2, and the noncompetitive mu antagonists, beta-funaltrexamine and naloxonazine. Inhibition of adenylyl cyclase activity by the delta-selective ligands, DPDPE, DSLET and [D-Ala2]-deltorphin II was unaffected by these antagonists. Conversely, the delta-selective antagonists, ICI 174,864 N-allyl2-Tyr-(alpha-aminisobutyric acid)2-Phe-Leu-OH and naltrindole, blocked the effects of the delta but not the mu opioid ligands. Adenylyl cyclase activity in nucleus accumbens and in caudate putamen is subject to regulation by both mu and delta opioid receptors. Topics: Adenylyl Cyclases; Amino Acid Sequence; Animals; Benzeneacetamides; Caudate Nucleus; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalins; Male; Molecular Sequence Data; Naloxone; Naltrexone; Nucleus Accumbens; Oligopeptides; Putamen; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, mu; Signal Transduction; Somatostatin | 1993 |
The use of specific opioid agonists and antagonists to delineate the vagally mediated antinociceptive and cardiovascular effects of intravenous morphine.
Intravenous (i.v.) administration of morphine produces a dose-dependent inhibition of the tail-flick (TF) reflex, depressor response, and bradycardia in the rat. Some of these effects depend on interactions of i.v. morphine with peripheral opioid receptors and the integrity of cervical vagal afferents. The present studies used the relatively specific mu, delta, and kappa opioid receptor agonists (DAGO, DPDPE or U-50,488H) and the relatively specific mu, delta, and kappa opioid receptor antagonists (beta-FNA, naloxonazine, naltrindole or nor-BNI) in either intact rats or rats with bilateral cervical vagotomy (CVAG) to delineate the vagal afferent/opioid-mediated components of these effects. I.v. administration of DAGO in intact rats produced a dose-dependent inhibition of the TF reflex, depressor response, and bradycardia virtually identical to those produced by i.v. morphine. All of these effects of either i.v. DAGO or i.v. morphine were significantly attenuated by either bilateral CVAG or pre-treatment with the mu 2 opioid receptor antagonist beta-FNA. Pre-treatment with the mu 1 opioid receptor antagonist naloxonazine affected i.v. DAGO-induced inhibition of the TF reflex and bradycardia, but had no significant effects on i.v. morphine-produced responses. I.v. administration of DPDPE produced a dose-dependent pressor response, but had no marked effects on the either the TF reflex or heart rate (HR). The pressor response was unaffected by either bilateral CVAG or pre-treatment with naltrindole, naloxone, hexamethonium, or bertylium. i.v. administration of U-50,488H produced a depressor response and bradycardia, but had no significant effect on the TF reflex. The depressor response and bradycardia produced by i.v. U-50,488H were unaffected by bilateral CVAG, but could be antagonized by pre-treatment with either nor-BNI or naloxone. These studies suggest that the vagal afferent-mediated antinociceptive and cardiovascular effects of i.v. morphine are primarily mediated by interactions with low affinity mu 2 opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analysis of Variance; Animals; Blood Pressure; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Heart Rate; Hexamethonium; Hexamethonium Compounds; Indoles; Injections, Intravenous; Male; Morphinans; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Narcotics; Pain; Pyrrolidines; Rats; Rats, Sprague-Dawley; Reference Values; Time Factors; Vagotomy; Vagus Nerve | 1993 |
Opioid-induced stimulation of fetal respiratory activity by [D-Ala2]deltorphin I.
[D-Ala2]deltorphin I effects on fetal respiratory activity was characterized to determine the role delta-opioid receptors play in modulating fetal respiratory activity. [D-Ala2]deltorphin I, infused at 0.3 or 100 micrograms/h, intracerebroventricularly (i.c.v.), stimulated fetal respiratory activity without changing blood pH, PCO2 or PO2. Stimulation by 0.3 micrograms/h, but not 100 micrograms/h, was blocked by i.c.v. infusion of the delta-opioid receptor antagonist, naltrindole. Stimulation by 100 micrograms/h was blocked by the mu 1-opioid receptor antagonist naloxonazine. These data suggest stimulation of fetal respiratory activity by 0.3 micrograms/h [D-Ala2]deltorphin I are mediated specifically through delta-opioid receptors; while [D-Ala2]deltorphin I at 100 micrograms/h is no longer selective for the delta-opioid receptor, and the stimulation may be mediated through the mu 1-opioid receptor. Topics: Animals; Dose-Response Relationship, Drug; Electromyography; Female; Fetus; Indoles; Injections, Intraventricular; Morphinans; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Pregnancy; Receptors, Opioid, delta; Respiration; Sheep | 1993 |
Involvement of mu1 and mu2 opioid receptor subtypes in tail-pinch feeding in rats.
Tail-pinch feeding (TPF) in rats is decreased following general (naltrexone, NTX) and mu (Cys2-Tyr3-Orn5-Pen7-amide, CTOP) opioid antagonists, but not following kappa (nor-binaltorphamine. Nor-BNI) or delta (naltrindole, NTI) opioid antagonists. Because multiple mu (mu1 and mu2) and delta (delta 1 and delta 2) opioid receptor subtypes have been characterized, the present study evaluated whether TPF was differentially altered following ICV administration of general (NTX), mu (beta-funaltrexamine, B-FNA), mu1 (naloxonazine, NAZ), kappa (Nor-BNI), delta 1 ([D-Ala2, Leu5, Cys6]-enkephalin, DALCE) and delta 2 (NTI) opioid antagonists. Like the reversible mu antagonist CTOP, the irreversible mu antagonist B-FNA significantly and dose-dependently (1-20 micrograms) reduced TPF by up to 28%. In contrast, whereas NAZ (50 micrograms) reduced TPF by 32%, this effect was highly variable and failed to achieve significance. Neither NTX (5-10 mg/kg, SC), Nor-BNI (20 micrograms), DALCE (40 micrograms) nor NTI (20 micrograms) significantly altered TPF, suggesting that kappa, delta 1 and delta 2 opioid receptor subtypes were not involved. Because no antagonist altered the duration of food contact during tail pinch, it appears that the opioid effect modulates ingestive rather than activational mechanisms. The reliable inhibition of TPF by B-FNA (mu1 and mu2), together with the variable effect of naloxonazine (mu1), appears to implicate both mu binding sites in this response. Topics: Animals; Arousal; Enkephalin, Leucine-2-Alanine; Feeding Behavior; Indoles; Male; Morphinans; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptors; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu | 1993 |
Effect of antagonists selective for mu, delta and kappa opioid receptors on the reinforcing effects of heroin in rats.
Antagonists selective for mu, delta and kappa-opioid receptors were evaluated for their effects on responding maintained by i.v. injections of heroin (60.0 micrograms/kg/injection) in rats during daily 3-hr sessions. Under base-line conditions, rats self-administered 10 to 20 heroin injections during each session, and injections were separated by relatively constant interinjection intervals of about 10 to 20 min. The mu-selective antagonist beta-funaltrexamine (beta-FNA; 5.0-20.0 mg/kg, s.c.) produced a dose-dependent increase in responding for heroin, with some doses of beta-FNA producing an extinction-like pattern of responding. These results were qualitatively similar to the effect obtained by lowering the unit dose per injection of heroin. The mu 1-selective antagonist naloxonazine (NXZ; 7.5-30.0 mg/kg, i.v.) and the delta-selective antagonist naltrindole (1.0-17.0 mg/kg) also produced dose-dependent increases in heroin self-administration, but neither naloxonazine nor naltrindole produced extinction-like patterns of responding. The kappa-selective antagonist nor-binaltorphimine (nor-BNI; 5.0-10.0 mg/kg, s.c.) had no effect on heroin self-administration. These results indicate that mu receptors play an important role in mediating the reinforcing effects of heroin in the rat. Delta and mu 1 receptors, but not kappa receptors, may also be involved. Topics: Animals; Heroin; Male; Naloxone; Naltrexone; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Self Administration | 1993 |
Role of mu 1- and delta-opioid receptors in modulation of fetal EEG and respiratory activity.
Recent evidence suggests that administration of low doses of morphine causes respiratory stimulation, along with a more active electroencephalogram (EEG) in the fetal lamb. The present study used selective opioid agonists and antagonists to determine the role mu 1- and delta-opioid receptor subtypes play in the response as well as determine if endogenous opioid peptides exert a tonic influence at the mu 1- and delta-opioid receptors to maintain normal EEG and respiratory activity under control, physiological conditions. Both morphine (2.5 mg/h iv) and [D-Pen2,D-Pen5]enkephalin (DPDPE) (46 nmol/h icv) resulted in a significant activation of fetal EEG, which was blocked by naloxonazine (NALZ, mu 1-opioid antagonist) and naltrindole (NTI, delta-opioid antagonist), respectively. Administration of NALZ alone, but not NTI, resulted in a slowing of the EEG. Morphine and [D-Ala2]deltorphin I (0.36 nmol/h icv) significantly increased breath number and were blocked by NALZ and NTI respectively. Both NALZ and NTI alone resulted in a reduction in breath number. These results suggest that the activation of the delta- or mu 1-opioid receptors will stimulate fetal respiratory and EEG activity. Furthermore, the endogenous opioids play a tonic role at both the delta- and mu 1-opioid receptors in the regulation of respiratory timing and EEG activity. Topics: Animals; Electroencephalography; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Fetal Movement; Fetus; Morphine; Naloxone; Naltrexone; Receptors, Opioid, delta; Receptors, Opioid, mu; Respiration; Sheep | 1993 |
Central opioid receptor subtype antagonists differentially reduce intake of saccharin and maltose dextrin solutions in rats.
Opioid modulation of ingestion includes general opioid antagonism of deprivation-induced water intake and intake of sucrose and saccharin solutions. Previous studies using selective subtype antagonists indicated that opioid effects upon deprivation-induced water intake occurred through the mu2 receptor and that opioid effects upon sucrose intake occurred through kappa and mu2 receptors. The present study compared the effects of intracerebroventricular administration of opioid receptor subtype antagonists upon intakes of a saccharin solution and a maltose dextrin (MD) solution to determine which receptor subtypes were involved in modulation of ingestion of different preferred tastants. Significant reductions in saccharin intake (1 h) occurred following naltrexone (20-50 micrograms: 66%) and naltrindole (delta, 20 micrograms: 75%), whereas [D-Ala2, Leu5, Cys6]-enkephalin (DALCE, delta 1, 40 micrograms: 45%) had transient (5 min) effects. Neither beta-funaltrexamine (B-FNA, mu), naloxonazine (mu1), nor nor-binaltorphamine (Nor-BNI, kappa) significantly altered saccharin intake. Significant reductions in MD intake (1 h) occurred following naltrexone (5-50 micrograms: 69%) and B-FNA (1-20 micrograms: 38%). MD intake was not reduced by naltrindole, DALCE, naloxonazine and Nor-BNI. Peak antagonist effects were delayed (20-25 min) to reflect interference with the maintenance, rather than the initiation of saccharin or MD intake. Comparisons of opioid antagonist effects across intake situations revealed that naltrexone had consistently low ID40 values for saccharin (29 nmol), MD (25 nmol), sucrose (6 nmol) and deprivation (38 nmol) intake. Despite its significant effects relative to naloxonazine, B-FNA had significantly higher ID40 values for saccharin (800 nmol), MD (763 nmol) and sucrose (508 nmol) relative to deprivation (99 nmol) intake, suggesting that mu2 receptors may be mediating maintenance of intake rather than taste effects. Nor-BNI had low ID40 values for intake of sucrose (4 nmol), but not for saccharin (168 nmol), MD (153 nmol) and deprivation (176 nmol), suggesting that kappa receptors may mediate ingestion of sweet-tasting stimuli. That delta (naltrindole: ID40 = 60 nmol), but not delta 1 (DALCE: ID40 = 288 nmol) antagonists consistently reduce saccharin intake suggests a role for the delta 2 receptor subtype in the modulation of hedonic orosensory signals. Topics: Animals; Drinking Behavior; Enkephalin, Leucine-2-Alanine; Injections, Intraventricular; Male; Naloxone; Naltrexone; Narcotic Antagonists; Polysaccharides; Rats; Rats, Sprague-Dawley; Saccharin | 1993 |
Identification of a novel receptor mediating substance P-induced behavior in the mouse.
To determine whether opioid receptors or the more recently characterized naloxone-sensitive substance P (SP) N-terminal binding sites play a role in desensitization to the behavioral effects of SP, we assessed the effects of selective antagonists at mu-(naloxonazine and beta-funaltrexamine), delta- (naltrindole) and kappa- (nor-binaltorphimine) opioid receptors, as well as the effect of [D-Pro2,D-Leu7]SP-(1-7) D-SP-(1-7) (D-SP (1-7)), an inhibitor of [3H]SP-(1-7) binding, on behaviors induced by intrathecally administered SP in mice. Whereas naloxone, a non-selective opioid antagonist, inhibited the development of behavioral desensitization to SP, the response to repeated SP administration remained unaffected by pretreatment with selective opioid antagonists. Like naloxone, however, the SP-(1-7) antagonist inhibited SP-induced desensitization. The protection against desensitization to SP by D-SP-(1-7), but not by selective antagonists of mu, delta or kappa receptors, suggests that desensitization to the behavioral effects of SP does not appear to be mediated by an action at an opioid receptor but by an action at the SP-(1-7) binding site. Topics: Analysis of Variance; Animals; Behavior, Animal; Binding Sites; Indoles; Injections, Spinal; Male; Mice; Morphinans; Naloxone; Naltrexone; Peptide Fragments; Substance P | 1992 |