naltrindole has been researched along with cyprodime* in 16 studies
16 other study(ies) available for naltrindole and cyprodime
Article | Year |
---|---|
The blockade of kappa opioid receptors exacerbates alveolar bone resorption in rats.
Bone resorption associated to chronic diseases, such as arthritis and periodontitis, results from exacerbated immuno-inflammatory host response that leads to tissue breakdown. The significance of opioid pathways as endogenous modulators of inflammatory events has already been described. Thus, the aim of this work is to determine whether some of the main three opioid receptors are endogenously activated to prevent bone loss during experimentally-induced alveolar bone resorption.. This study used an experimental model of alveolar bone resorption induced by ligature in rats. A silk thread was placed around the 2nd maxillary molar of male Wistar rats. In the 3rd, 4th and 5th day after ligation the rats received a local injection of different concentrations of opioid antagonists Cyprodime, Naltrindole, or Nor-binaltorphimine, which specifically block mü, delta and kappa opioid receptors, respectively. In the 7th experimental day, rats were euthanized and their maxillae collected for evaluation of alveolar bone and fiber attachment loss, morphometric counting of osteoclasts and osteoblasts, as well as the levels of cytokines IL-1β, IFN-γ, and IL-6 by ELISA.. Selective antagonism of kappa opioid receptors, but not mü and delta, exacerbated alveolar bone resorption induced by ligature in rats. The increased bone loss associated with higher number of osteoclasts surrounding alveolar bone, although osteoblasts' counting remained unchanged. The concentrations of IL-1β and IL-6 in periodontal tissues were also significantly higher in the rats treated with the kappa antagonist.. Inhibiting kappa opioid receptors exacerbates alveolar bone resorption. Topics: Alveolar Bone Loss; Animals; Bone Resorption; Cytokines; Disease Models, Animal; Male; Morphinans; Naltrexone; Narcotic Antagonists; Osteoblasts; Osteoclasts; Periodontitis; Rats; Rats, Wistar; Receptors, Opioid | 2020 |
A low pKa ligand inhibits cancer-associated pain in mice by activating peripheral mu-opioid receptors.
Topics: Analgesics, Opioid; Animals; Bone Neoplasms; Cancer Pain; Cell Line, Tumor; Fentanyl; Hydrogen-Ion Concentration; Hyperalgesia; Ligands; Male; Melanoma, Experimental; Mice; Mice, Inbred C3H; Mice, Inbred C57BL; Morphinans; Naloxone; Naltrexone; Narcotic Antagonists; Piperidines; Receptors, Opioid, mu | 2020 |
Antagonism of μ-opioid receptors reduces sensation seeking-like behavior in mice.
Novelty- and sensation-seeking behaviors induce activity of the brain reward system and are associated with increased susceptibility to drug abuse. Endogenous opioids have been implicated in reward-related behavior; however, the involvement of specific opioid receptors in the mechanism of sensation seeking is unknown. Here, we show that selective inhibition of opioid receptors reduce operant sensation seeking in mice. Administration of naltrexone (a nonselective opioid antagonist) reduced instrumental responding for sensory stimuli at one of the tested doses (2 mg/kg). More robust effects were observed in the case of cyprodime, a selective μ opioid receptor antagonist, which reduced instrumental responses by ∼50% at doses of 0.5 mg/kg and larger. Conversely, selective δ and κ receptor antagonists (naltrindole and nor-binaltorphimine, respectively) had no effect on sensation-seeking behavior. Importantly, while naltrexone produces aversion in the conditioned place preference test, cyprodime had no such effect. Therefore, reduced instrumental responding was not correlated with aversive effects of the opioid antagonists. In conclusion, our results revealed a novel mechanism of action of selective opioid receptors antagonists, which may have relevance for their efficacy in the treatment of drug abuse. Topics: Animals; Appetitive Behavior; Brain; Conditioning, Operant; Dose-Response Relationship, Drug; Exploratory Behavior; Male; Mice, Inbred C57BL; Morphinans; Motivation; Motor Activity; Naltrexone; Narcotic Antagonists; Random Allocation; Receptors, Opioid; Receptors, Opioid, mu; Reward | 2019 |
Brain opioid and nociceptin receptors are involved in regulation of bombesin-induced activation of central sympatho-adrenomedullary outflow in the rat.
Previously, we reported that central administration of bombesin, a stress-related peptide, elevated plasma levels of catecholamines (noradrenaline and adrenaline) in the rat. The sympatho-adrenomedullary system, which is an important component of stress responses, can be regulated by the central opioid system. In the present study, therefore, we examined the roles of brain opioid receptor subtypes (µ, δ, and κ) and nociceptin receptors, originally identified as opioid-like orphan receptors, in the bombesin-induced activation of central sympatho-adrenomedullary outflow using anesthetized male Wistar rats. Intracerebroventricularly (i.c.v.) administered bombesin-(1 nmol/animal) induced elevation of plasma catecholamines was significantly potentiated by pretreatment with naloxone (300 and 1000 µg/animal, i.c.v.), a non-selective antagonist for µ-, δ-, and κ-opioid receptors. Pretreatment with cyprodime (100 µg/animal, i.c.v.), a selective antagonist for µ-opioid receptors, also potentiated the bombesin-induced responses. In contrast, pretreatment with naltrindole (100 µg/animal, i.c.v.) or nor-binaltorphimine (100 µg/animal, i.c.v.), a selective antagonist for δ- or κ-opioid receptors, significantly reduced the elevation of bombesin-induced catecholamines. In addition, pretreatment with JTC-801 (30 and 100 µg/animal, i.c.v.) or J-113397 (100 µg/animal, i.c.v.), which are selective antagonists for nociceptin receptors, also reduced the bombesin-induced responses. These results suggest that brain µ-opioid receptors play a suppressive role and that brain δ-, κ-opioid, and nociceptin receptors play a facilitative role in the bombesin-induced elevation of plasma catecholamines in the rat. Thus, in the brain, these receptors could play differential roles in regulating the activation of central sympatho-adrenomedullary outflow. Topics: Adrenal Medulla; Animals; Bombesin; Brain; Catecholamines; Morphinans; Naloxone; Naltrexone; Nociceptin Receptor; Rats; Receptors, Opioid; Sympathetic Nervous System | 2016 |
Role of µ, κ, and δ opioid receptors in tibial inhibition of bladder overactivity in cats.
In α-chloralose anesthetized cats, we examined the role of opioid receptor (OR) subtypes (µ, κ, and δ) in tibial nerve stimulation (TNS)-induced inhibition of bladder overactivity elicited by intravesical infusion of 0.25% acetic acid (AA). The sensitivity of TNS inhibition to cumulative i.v. doses of selective OR antagonists (cyprodime for µ, nor-binaltorphimine for κ, or naltrindole for δ ORs) was tested. Naloxone (1 mg/kg, i.v., an antagonist for µ, κ, and δ ORs) was administered at the end of each experiment. AA caused bladder overactivity and significantly (P < 0.01) reduced bladder capacity to 21.1% ± 2.6% of the saline control. TNS at 2 or 4 times threshold (T) intensity for inducing toe movement significantly (P < 0.01) restored bladder capacity to 52.9% ± 3.6% or 57.4% ± 4.6% of control, respectively. Cyprodime (0.3-1.0 mg/kg) completely removed TNS inhibition without changing AA control capacity. Nor-binaltorphimine (3-10 mg/kg) also completely reversed TNS inhibition and significantly (P < 0.05) increased AA control capacity. Naltrindole (1-10 mg/kg) reduced (P < 0.05) TNS inhibition but significantly (P < 0.05) increased AA control capacity. Naloxone (1 mg/kg) had no effect in cyprodime pretreated cats, but it reversed the nor-binaltorphimine-induced increase in bladder capacity and eliminated the TNS inhibition remaining in naltrindole pretreated cats. These results indicate a major role of µ and κ ORs in TNS inhibition, whereas δ ORs play a minor role. Meanwhile, κ and δ ORs also have an excitatory role in irritation-induced bladder overactivity. Topics: Acetic Acid; Animals; Cats; Female; Male; Morphinans; Naloxone; Naltrexone; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Tibial Nerve; Transcutaneous Electric Nerve Stimulation; Urinary Bladder, Overactive | 2015 |
Opioid-like antinociceptive effects of oral administration of a lectin purified from the seeds of Canavalia brasiliensis.
The objective of this study was to evaluate the antinociceptive effects of a lectin from Canavalia brasiliensis (ConBr) when administered orally to murine models of chemical and thermal nociception. ConBr up to 100 mg/kg produced significant and dose-dependent antinociceptive effects: 81% reduction in abdominal writhing induced by 0.6% acetic acid; 26 and 52% reduction in early- and late-stage paw licking, respectively, induced by 2.5% formalin; and 155% increase in reaction latency (heightened thermal pain threshold). In all models, the antinociceptive effect was reversed by the lectin-binding carbohydrate α-d-methyl-mannoside and by the nonselective opioid antagonist naloxone. The antinociceptive effect observed in the formalin test was inhibited by the δ-selective antagonist naltrindole and the κ-selective antagonist nor-binaltorphimine but not by the μ-selective antagonist cyprodime. In conclusion, when administered orally to Swiss mice, the ConBr lectin displayed antinociceptive activity, both peripheral and central, mediated by the opioid system and involving δ-and κ-receptors and the lectin domain. Topics: Administration, Oral; Analgesics; Analgesics, Opioid; Animals; Canavalia; Mice; Morphinans; Naloxone; Naltrexone; Nociception; Pain Measurement; Plant Lectins; Receptors, Opioid, delta; Receptors, Opioid, kappa; Seeds | 2013 |
The cardiovascular effects of a chimeric opioid peptide based on morphiceptin and PFRTic-NH2.
MCRT (YPFPFRTic-NH(2)) is a chimeric opioid peptide based on morphiceptin and PFRTic-NH(2). In order to assess the cardiovascular effect of MCRT, it was administered by intravenous (i.v.) injection targeting at the peripheral nervous system and by intracerebroventricular (i.c.v.) injection targeting at the central nervous system. Naloxone and L-NAME were injected before MCRT to investigate possible interactions with MCRT. Results show that administration of MCRT by i.v. or i.c.v. injection could induce bradycardia and decrease in mean arterial pressure (MAP) at a greater degree than that with morphiceptin and PFRTic-NH(2). When MCRT and NPFF were coinjected, we observed a dose-dependent weakening of these cardiovascular effects by MCRT. Because naloxone completely abolished the cardiovascular effects of MCRT, we conclude that opioid receptors are involved in regulating the MAP of MCRT regardless of modes of injection. The effect of MCRT on heart rate is completely dependent on opioid receptors when MCRT was administered by i.c.v. instead of i.v. The central nitric oxide (NO) pathway is involved in regulating blood pressure by MCRT under both modes of injection, but the peripheral NO pathway had no effect on lowering blood pressure mediated by MCRT when it was administered by i.c.v. Based on the results from different modes of injection, the regulation of heart rate by MCRT mainly involves in the central NO pathway. Lastly, we observed that the cardiovascular effects of MCRT such as bradycardia and decrease of blood pressure, were stronger than that of its parent peptides. Opioid receptors and the NO pathway are involved in the cardiovascular regulation by MCRT, and their degree of involvement differs between intravenous and intracerebroventricular injection. Topics: Analgesics, Opioid; Animals; Blood Pressure; Bradycardia; Endorphins; Heart Rate; Hypotension; Injections, Intravenous; Injections, Intraventricular; Male; Morphinans; Naloxone; Naltrexone; Narcotic Antagonists; NG-Nitroarginine Methyl Ester; Rats; Rats, Wistar | 2013 |
Analgesic properties of chimeric peptide based on morphiceptin and PFRTic-amide.
A chimeric opioid peptide (MCRT, YPFPFRTic-NH(2)) was here designed and synthesized. This peptide was based on morphiceptin (YPFP-NH(2)) and a neuropeptide FF (NPFF) derivative (PFRTic-NH(2)) sharing one proline. This peptide is intended to produce potent analgesia. MCRT was found to induce analgesic activity in a dose- and time-dependent manner, as indicated by a tail flick latency test in mice to which it had been intracerebroventricularly administered (5-60 min, 0.025-2.5 nmol/kg (0.5-50 pmol per mouse), ED(50)=1.49 nmol/kg). At 2.5nmol/kg, MCRT showed significantly higher levels of analgesic activity than morphiceptin or PFR(Tic)amide at 2500 nmol/kg. Naltrindole and cyprodime were found to partially but significantly inhibit this analgesic activity, but naloxone blocked it completely. The kappa opioid receptor antagonist nor-BNI was found to slightly inhibit MCRT and morphiceptin. Pre-injection of BIBP3226 and co-administration of NPFF and MCRT showed that NPFF receptors were involved in the analgesia of MCRT. BIBP3226 was found to weaken the analgesic effects of MCRT, but BIBP3226 could not block the analgesic effects of PFR(Tic)amide. Overall, MCRT was found to have stronger analgesic activity than morphiceptin or PFR(Tic)amide when interacting with mixed μ/δ opioid receptor interactions. MCRT also showed partial interaction with NPFF receptors. Topics: Analgesia; Analgesics, Opioid; Animals; Arginine; Dose-Response Relationship, Drug; Endorphins; Guinea Pigs; Male; Mice; Morphinans; Naloxone; Naltrexone; Neuropeptides; Opioid Peptides; Proline; Receptors, Neuropeptide; Tetrahydroisoquinolines; Time Factors | 2012 |
Antinociception, tolerance and withdrawal symptoms induced by 7-hydroxymitragynine, an alkaloid from the Thai medicinal herb Mitragyna speciosa.
7-Hydroxymitragynine is a potent opioid analgesic alkaloid isolated from the Thai medicinal herb Mitragyna speciosa. In the present study, we investigated the opioid receptor subtype responsible for the analgesic effect of this compound. In addition, we tested whether development of tolerance, cross-tolerance to morphine and naloxone-induced withdrawal signs were observed in chronically 7-hydroxymitragynine-treated mice. Subcutaneous (s.c.) administration of 7-hydroxymitragynine produced a potent antinociceptive effect mainly through activation of mu-opioid receptors. Tolerance to the antinociceptive effect of 7-hydroxymitragynine developed as occurs to morphine. Cross-tolerance to morphine was evident in mice rendered tolerant to 7-hydroxymitragynine and vice versa. Naloxone-induced withdrawal signs were elicited equally in mice chronically treated with 7-hydroxymitragynine or morphine. 7-Hydroxymitragynine exhibited a potent antinociceptive effect based on activation of mu-opioid receptors and its morphine-like pharmacological character, but 7-hydroxymitragynine is structurally different from morphine. These interesting characters of 7-hydroxymitragynine promote further investigation of it as a novel lead compound for opioid studies. Topics: Analgesics; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Drug Tolerance; Injections, Subcutaneous; Male; Mice; Mitragyna; Models, Molecular; Morphinans; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Pain Measurement; Reaction Time; Secologanin Tryptamine Alkaloids; Substance Withdrawal Syndrome; Thailand | 2005 |
Effects of the local administration of selective mu-, delta-and kappa-opioid receptor agonists on osteosarcoma-induced hyperalgesia.
The stimulation of peripheral opioid receptors yields analgesic responses in a model of bone cancer-induced pain in mice. In order to know the type(s) of peripheral opiate receptors involved, the paw thermal withdrawal latencies were measured in C3H/HeJ mice bearing a tibial osteosarcoma, after administering selective agonists of mu-,delta-and kappa-opiate receptors. The peritumoral administration of DAGO (0.6-6 microg) inhibited the osteosarcoma-induced hyperalgesia at doses ineffective in healthy animals, the highest one even increasing the withdrawal latencies over the control values. Naloxone-methiodide (2 mg/kg) and cyprodime (1 mg/kg), but not naltrindole (0.1 mg/kg) nor nor-binaltorphimine (10 mg/kg), antagonized DAGO-induced analgesic effects, these therefore probably being mediated through peripheral mu-opioid receptors. The peritumoral injection of DPDPE (100 microg) induced analgesia which was inhibited by naloxone-methiodide and naltrindole but not by nor-binaltorphimine. Cyprodime partially antagonized the analgesia induced by 100 microg of DPDPE, but did not modify the effect induced by 30 microg of this agonist-a dose that restores the hyperalgesic latencies up to the control values. The antihyperalgesic effect induced by the peritumoral administration of U-50,488H (1 microg) was antagonized by naloxone-methiodide and nor-binaltorphimine, but not by cyprodime nor naltrindole, thus suggesting the involvement of peripheral kappa-opioid receptors. In conclusion, the stimulation of peripheral mu-, delta- and kappa-opioid receptors is a pharmacological strategy useful for relieving this experimental type of bone cancer-induced pain, the greatest analgesic effect being achieved by stimulating peripheral mu-opioid receptors. Topics: Analgesics, Opioid; Animals; Bone Neoplasms; Drug Interactions; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Hyperalgesia; Mice; Morphinans; Naltrexone; Narcotic Antagonists; Osteosarcoma; Receptors, Opioid | 2005 |
[(11)C]-GR89696, a potent kappa opiate receptor radioligand; in vivo binding of the R and S enantiomers.
The R and S enantiomers of [(11)C]GR89696, [(11)C]-methyl 4-[(3,4-dichlorophenyl)acetyl]-3-[(1-pyrrolidinyl)methyl]-1-piperazinecarboxylate, were synthesized from their appropriate chiral precursors and [(11)C]methyl chloroformate. The [(11)C]-labeled R enantiomer of GR89696, also known as GR103545, demonstrated high affinity in mouse brain with region to cerebellar ratios at 90 minutes of 11.4 and 8.7 for the hypothalamus and olfactory tubercle, respectively. The [(11)C]-labeled S enantiomer showed low affinity and region to cerebellar ratios of 1 for all brain regions. The [(11)C]-labeled GR103545 exhibited a selective and saturable binding for the kappa opioid receptor. Topics: Adrenergic alpha-Agonists; Animals; Brain; Mice; Morphinans; Naltrexone; Narcotic Antagonists; Piperazines; Pyrrolidines; Receptors, Opioid, kappa; Stereoisomerism; Tissue Distribution | 2002 |
Mu- and delta-opioid receptor antagonists reduce levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson's disease.
Long-term treatment of Parkinson's disease with levodopa is complicated by the emergence of involuntary movements, known as levodopa-induced dyskinesia. It has been hypothesized that increased opioid transmission in striatal output pathways may be responsible for the generation of dyskinesia. In this study, we have investigated the effect of blockade of opioid peptide transmission on levodopa-induced dyskinesia in a primate model of Parkinson's disease-the MPTP-lesioned marmoset. Coadministration of nonselective and mu- or delta-subtype-selective opioid receptor antagonists with levodopa resulted in a significant decrease in dyskinesia. There was no attenuation of the anti-parkinsonian actions of levodopa. These data suggest that specific mu- or delta-opioid receptor antagonists might be applicable clinically in the treatment of levodopa-induced dyskinesia in Parkinson's disease. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Callithrix; Disease Models, Animal; Drug Therapy, Combination; Dyskinesias; Female; Hypokinesia; Levodopa; Male; Morphinans; Motor Activity; Naltrexone; Narcotic Antagonists; Parkinsonian Disorders; Posture; Receptors, Opioid, delta; Receptors, Opioid, mu | 2001 |
Use of selective antagonists and antisense oligonucleotides to evaluate the mechanisms of BUBU antinociception.
Evidence suggests that the antinociceptive effects of selective delta-opioid receptor agonists may involve an activation of the mu-receptor in some experimental conditions. The aim of this study was to clarify the receptors involved in the antinociceptive responses of the selective and systemically active delta-opioid receptor agonist Tyr-D-Ser-(O-tert-butyl)-Gly-Phe-Leu-Thr-(O-tert-butyl) (BUBU). The antinociception induced by systemic (i.v.) or central (i.c.v.) administration of BUBU was measured in the hot plate (jumping and paw lick latencies) and tail immersion tests in mice. In both tests, the responses were more intense when BUBU was administered by central route. The pre-treatment with the mu-opioid receptor antagonist cyprodime blocked the effects induced by central BUBU in the hot plate and tail immersion tests. The delta-opioid receptor antagonist naltrindole had no effect on BUBU-induced antinociception in the hot plate but decreased BUBU responses in the tail immersion test. Further evidence for this dual receptor action of BUBU was demonstrated by using antisense oligodeoxynucleotides. Thus, a reduction in central BUBU-induced antinociception was observed in the tail immersion test after the administration of antisense probes that selectively blocked the expression of mu- or delta-opioid receptors. These findings clearly indicate using a dual pharmacological and molecular approach that BUBU mediates its antinociceptive effects via activation of both mu- and delta-opioid receptors. Topics: Analgesics; Animals; Male; Mice; Morphinans; Naltrexone; Narcotic Antagonists; Oligonucleotides, Antisense; Oligopeptides; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, mu | 1999 |
Characterization of opiate binding sites on the goldfish (Carassius auratus L.) pronephric leukocytes.
The head kidney is the main lymphopoietic organ of teleost fish. It is the source of leukocytes inhabiting the peritoneal cavity during an experimental peritoneal inflammation (Gruca et al., Folia Biol.-Kraków, 1997, 44, 137-142). The number of elicited peritoneal leukocytes is significantly lower in the goldfish with concomitant morphine injection than in their counterparts injected with the irritant only. Morphine may act directly on the head kidney leukocytes, as they are equipped with the selective naloxone-binding sites (Chadzińska et al., Arch. Immunol. Ther. Exp., 1997, in press). Further characterization of these opioid receptors (by radioligand binding techniques) indicates that the goldfish head kidney leukocytes possess at least two different opiate-binding sites: the [3H]naloxone binding site with a KD = 87 +/- 2.1 nM and Bmax = 298 +/- 15 fmol/mg protein; and the second, the [3H]naltrindole binding site with a KD = 37 +/- 5.5 nM and Bmax = 1,172 +/- 220 fmol/mg protein. The competition experiments with delta- (naltrindole), kappa- (nor-binaltorphimine) and mu- (cyprodime, naltrexone) selective ligands suggest that the naloxone-binding site is similar to mu 3 receptors described by Stefano et al. (Proc. Nat. Acad. Sci. USA, 1993, 90 11099-11103). Low affinity binding of selective ligands excludes the presence of neuronal-type mu- and delta-opioid receptors on goldfish leukocytes. Topics: Animals; Binding Sites; Goldfish; Leukocytes; Morphinans; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Receptors, Opioid, delta; Receptors, Opioid, mu | 1997 |
The influence of opioid antagonists on the discriminative stimulus effects of ethanol.
The aim of the present study was to investigate the role of different endogenous opioid systems in the expression of ethanol's discriminative stimulus effects in a two-lever operant drug discrimination paradigm. Wistar rats trained to make differential responses following the administration of ethanol (1 g/kg, i.p.) or saline. The correct response (fixed-ratio schedule; FR10) resulted in the presentation of food. Once rats had acquired the discrimination an ethanol dose-response test was conducted. The effects of opioid antagonists on the discrimination were assessed by administering the mu-opioid receptor antagonists naloxone (0.5-20 mg/kg s.c.) and cyprodime (5-100 mg/kg s.c.) and the delta-opioid receptor antagonist naltrindole (0.1-25 mg/kg s.c.) 15-30 min before the discrimination test. Furthermore, the selective kappa-opioid antagonist nor-binaltorphimine (5 mg/kg s.c.) given 24 h before the test session was examined. Results of generalization testing demonstrate that ethanol discrimination was dose dependent. Pretreatment with naloxone produced only at the highest dose a partial, but significant, antagonism, whereas cyprodime failed to alter the ethanol cue. This suggested the involvement of other opioid receptor subtypes. However, neither naltrindole nor nor-binaltorphimine had any effect on the ethanol-saline discrimination. These results demonstrate that the expression of the ethanol cue is only partly dependent on the function of endogenous opioid systems. Topics: Animals; Discrimination, Psychological; Dose-Response Relationship, Drug; Ethanol; Male; Morphinans; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Wistar | 1996 |
Differential effects of selective mu-, kappa- and delta-opioid antagonists on electroshock seizure threshold in mice.
The effects of the selective opioid antagonists cyprodime (mu; 1, 3, 10, 30 mg/kg IP), norbinaltorphimine (kappa; 3, 10, 30 mg/kg IP) and naltrindole (delta; 0.3, 1, 3, 10 mg/kg IP) on electroshock seizure threshold in mice were compared with those of the universal opioid antagonist naloxone (0.3, 1, 10 mg/kg IP). Seizure threshold was increased by mu-receptor blocking doses of both cyprodime and naloxone, unaltered by norbinaltorphimine and decreased (in a dose-related manner) by all doses of naltrindole. The effects of naltrindole were similar to those of the established pro-convulsant agent bicuculline (1 mg/kg IP); however, naloxone and cyprodime produced relatively small increases in seizure threshold when compared with phenytoin (doses up to 30 mg/kg IP). The differential effects of mu-, kappa- and delta-receptor antagonists obtained in this study suggest that electroshock seizure threshold in mice may be controlled, at least in part, by a balance between endogenous opioids acting either pro-convulsantly through mu-receptors or anti-convulsantly via delta-receptors. Topics: Animals; Anticonvulsants; Bicuculline; Dose-Response Relationship, Drug; Electroshock; gamma-Aminobutyric Acid; Indoles; Male; Mice; Mice, Inbred Strains; Morphinans; Naloxone; Naltrexone; Narcotic Antagonists; Phenytoin; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu | 1991 |